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Abstract 

This research investigated the effects of prolonged low workload on operator 

performance in the context of controlling a network of unmanned vehicles (UxVs) in a 

search, track, and destroy mission with the assistance of an automated planner. In 

addition, this research focused on assessing the physical, social, and cognitive coping 

mechanisms that operators rely upon during prolonged low workload missions. An 

experiment was conducted to collect data for researching the impact of low workload in 

human supervisory control of networked, heterogeneous UxVs. This research showed 

that performance was not necessarily affected at the low end of the workload spectrum, 

especially in the context of human supervisory control of networked UxVs. Given 

varying levels of low taskload, operators tended to gravitate toward a common total 

utilization (percent busy time) that was well above the required utilization. The 

boredom due to the low taskload environment caused operators to spend the majority 

of their time distracted; to a lesser degree, operators were more directed than divided in 

terms of attention. More directed attention predicted higher operator performance, 

especially in the tracking portion of the mission. Higher utilization predicted improved 

operator performance in search and destroy tasks, but hindered the automation’s ability 

to track targets. Video gaming experience was a detriment to destroying hostile targets 

in this long duration, low workload mission involving human supervisory control of 

networked UxVs. Vigilance, shown by a decrement in amount of directed attention per 

hour, decreased over the course of the mission duration. Top performers had higher 

directed attention and coped with the boredom through extreme focus or use of 

switching times to stay engaged in the mission. In comparison to a moderate workload 

study, participants in this low workload experiment performed both better and worse. 

Low workload did not necessarily cause a drop in operator performance. 
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1 Introduction 

1.1 Motivation 

Expeditionary networks of unmanned vehicles (UxVs) are envisioned to be key 

resources in persistent surveillance [1]. These heterogeneous, unmanned vehicles will 

be highly autonomous. They will collaborate as a network of smart robots, equipped 

with onboard computers and communication devices. The mission environment will be 

dynamic and time-sensitive, requiring real-time, automated schedule replanning. A 

pictoral representation of the vision for networked UxVs is shown in Figure 1.  

 

Figure 1: Coordinated Operations with Networked UxVs [2] 

Automation is of utmost importance since computers provide the technological 

capability of quickly analyzing and editing a mission plan while accounting for every 
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known mission constraint and requirement. However, computer optimization 

algorithms are‚brittle‛ since they only account for quantifiable variables coded in the 

design of the system [3]. As a result, human judgment is an imperative part of the 

human-machine system. In highly autonomous systems, humans must rise to the role of 

human supervisory controllers. ‛Supervisory control means that one or more human 

operators are intermittently programming and continually receiving information from a 

computer that itself closes an autonomous control loop through artificial effectors and 

sensors to the controlled process or task environment‛ [4].    

Automation is designed to lower the operator’s information processing demands 

in order to improve situational awareness and increase performance. However, an 

approach involving high levels of automation can be counterproductive [5]. As 

automation directly controls the unmanned vehicles, humans can fall prey to ‚the 

ironies and paradoxes of automation‛ [6]. It is said that the more reliable the 

automation, the worse human operators perform in the monitoring task [6]. Increased 

automation can lower an operator’s workload too much, leading to mental underload, 

which can cause a decrement in vigilance, or sustained alertness, and lead to boredom. 

It has been shown that boredom produces negative effects on morale, performance, and 

quality of work [7]. Unfortunately, as increased automation shifts controllers into 

system management positions, loss of vigilance, monotony, and boredom are likely to 

proliferate [8]. 
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1.2 Operational Benefit   

Although today’s military employs a team of people to operate a single UxV, 

advances in automation technology seek to invert the ratio of operators to UxVs so that, 

in the future, one human operator will be able to control multiplue UxVs  [9]. The vision 

is to have a single operator controlling land, air, and sea vehicles of all different types 

from the same supervisory control interface. As human supervisory control of UxVs 

becomes more prevalent, networks of vehicles equipped with collaborative autonomy 

will become reality [10]. This research hopes to provide future system designers with an 

assessment of the impact that low workload has on supervisory control of multiple 

UxVs.   

To this end, a long duration, low workload study was conducted using a 

multiple UxV simulation. This human supervisory control experiment involved a 

search, track, and destroy mission scenario. The mission was designed to be a realistic 

situation with a dynamic environment full of moving emergent targets, including some 

hostiles. The simulation specifically involved a high level of automation in order to 

induce boredom. This simulation mimics real world Unmanned Aerial Vehicle (UAV) 

missions, which involve low workload and range from 8 to 12 hours. 

In addition to providing research support for future multi-UxV objectives, this 

study applies to a myriad of domains where boredom is prevalent in current 

operations. For instance, UAV Predator pilots face vigilance and boredom issues due to 
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long duration, low workload missions. The aviation world also suffers from these 

problems, as in the Northwest Airlines incident of 2009 where the pilots overshot their 

destination by 150 miles due to loss of vigilance and situational awareness [11]. This 

research also applies to scenarios such as air traffic control in low traffic situations, 

transportation system monitoring, and process control supervision. Already, the 

prevalence of human-machine systems has caused increased interest in vigilance 

research [12]. 

This long duration, boredom research in the context of networked UxVs is 

invaluable because, despite the growing need for boredom and vigilance research [13], 

there is a shortage of research on this topic [14, 15]. The occurrences of vigilance 

degradation and boredom are not well understood, and neither are their outcomes [16]. 

Literature reviews on these topics are outdated [17, 18].  In light of current technological 

advances and the necessity of boredom research on vigilance tasks, it is even more 

important to update research on this topic. 

1.3 Thesis Organization 

Chapter 1, Introduction, outlines the motivation and operational benefit for this  

research. 

Chapter 2, Background, provides information on workload, vigilance, boredom, and  

fatigue, and their implications on unmanned vehicle operations. It also  

details the research questions and hypotheses of this thesis.  
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Chapter 3, Experimental Evaluation, describes the procedures and design of the Low  

Taskload, human-performance experiment used to test the hypotheses of this  

research. 

Chapter 4, Results and Discussion, presents the results of the analysis for each research  

question immediately followed by discussion. 

Chapter 5, Conclusion, states the findings of this study and provides recommendations  

for future work.  
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2 Background 

The literature review presented in this chapter is the structure supporting the 

experimental methodology of this research. The three pillars of this research are 

workload, vigilance, and boredom. This chapter explains the theory behind low 

workload with regard to performance and discusses the vigilance decrement associated 

with low workload. Empirical evidence for measuring vigilance is presented, followed 

by empirical evidence for measuring boredom. Pitfalls of boredom and fatigue are 

discussed in the context of current unmanned aerial vehicle domains. Furthermore, this 

chapter sets the stage for the experimental testbed used in this study by describing a 

previous single-operator UxV experiment on moderate-level workload and 

performance. This chapter culminates in the presentation of the five research questions 

and hypotheses investigated.  

2.1 Workload 

Workload plays a pivotal role in the performance of a human-automation 

system. Workload is an individual’s perceived level of busyness, while taskload is the 

amount of work imposed upon an operator [19]. Workload and taskload often go hand 

in hand; however, a person who is easily overwhelmed may perceive a moderate 

taskload as high workload. The Yerkes-Dodson law, which explains the link between 

workload and performance, is now discussed as a motivating factor for this research to 
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determine whether performance, in fact, declines in a parabolic fashion as workload 

decreases.  

2.1.1 Yerkes-Dodson Law 

The Yerkes-Dodson law describes the relationship between workload and 

performance as shown in Figure 2. The Yerkes-Dodson ‚law‛ nominally depicts a drop 

in operator performance when the operator is over-worked or under-worked.  

 

Figure 2: Graphical representation of the Yerkes-Dodson Law 

Although the Yerkes-Dodson law, created in the year 1908, originally related arousal to 

performance  [20], the law has been extended to incorporate workload in the place of 

arousal [21, 22]. A relationship similar to the Yerkes-Dodson curve suggests that the 

drop in operator performance during low arousal is due to human complacency, while 

the drop in performance during high arousal is a result of overload [23]. 

Workload 

good 

poor 

low                  moderate                 high               
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Research shows that operators controlling multiple UxVs perform significantly 

worse under high operational tempos [24] [25] [26]. A metric that objectively describes 

an operator’s workload is utilization, or percent busy time. It has been shown that 

performance significantly degrades when supervisory control operators are tasked 

beyond 70% utilization [24] [27] [28]. Although a general consensus recognizes that 

performance drops off according to the Yerkes-Dodson law at high levels of workload, 

little is known about whether the low end of workload actually mirrors the same 

plummet in performance, particularly in the context of supervisory control of multiple 

UxVs in a highly autonomous system.  

The Yerkes-Dodson law is notional, and steep drops in performance have only 

been reported for high workload [24]. It has been argued that the Yerkes-Dodson 

measure of workload, or arousal, is lacking in three areas: predictive capability, clarity, 

and unitary construct [22, 29]. Thus, the Yerkes-Dodson curve has serious drawbacks 

for predicting performance. Several sources claim that the connection between 

workload and performance is much more complex than an over-simplified, inverted ‚u-

shape‛ curve suggests [30-32].   

This thesis research seeks to determine the validity of the Yerkes-Dodson 

relationship between performance and low workload. A long duration, low workload 

experiment using a networked UxV supervisory control simulation was conducted to 

measure performance among three groups of varying taskload. This experiment was 
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designed to compare performance across three low levels of workload, assuming that 

taskload corresponds with workload.  

2.2 Vigilance 

Vigilance is denoted as a state of being alertly watchful, especially to avoid 

danger, and is often required in a military, supervisory control context. The human 

tasks of monitoring and decision making for a networked UxV system can be 

considered controlled processes, which are described as serial tasks requiring effort 

under an individual’s direct control [33]. It is known that vigilance decrement is an 

inherent part of controlled processing [34]. Some researchers refer to vigilance 

decrement as a decrease in attentional capacity, which is a result of overload from high 

mental workload [35-37]. However, other researchers state that vigilance decrement is 

caused by attentional withdrawal from low workload [38-40]. This research focuses on 

vigilance associated with low workload.  

2.2.1 Measuring Vigilance 

Measuring vigilance may include objective, physiological, and subjective 

instruments [41]. Vigilance can typically be measured objectively according to four 

manifestations of how quickly people can detect critical events: (1) target detection rate, 

or hit rate, (2) non-target detection rate, or correct rejection rate, (3) failure to detect targets 

rate, or omission rate, and (4) incorrect identification of non-targets as targets rate, or false 

alarm rate [42]. UxV operations of the future, which include highly autonomous 
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systems, will require sustained vigilance due to the need for prolonged monitoring and 

persistent surveillance. Vigilance research suggests that a performance trade-off exists 

between active and passive sustained monitoring [42].  

For example, on such study involved a passive, sonar target detection 

environment with target tones sounding in a noise background at a mean rate of 10 per 

minute, and irrelevant probe tones playing at intervals of 2 to 4 seconds [43].  

Participants listening for sonar target tones were asked to make false detections of 

irrelevant probes. During the 28-minute test session, the participants’ response rates 

fluctuated for minutes at a time, indicating a long-term change in performance. 

Response rates of the false detections declined after only 2 to 3 minutes of task 

performance, and subsequent response rates stayed below 70 to 80% of initial rates. 

According to the study, it was shown that averaged false detections of the frequent, 

irrelevant probe tones provide an accurate estimate of alertness level. However, 

measuring detection frequency and accuracy is not the best representation of vigilance. 

Nevertheless, similar studies measure vigilance using operator detection times. 

Two studies on air traffic control (ATC) en route monitoring determined that the time to 

detect conflicts and the frequency of missed traffic conflicts increased significantly over 

the course of just two hours [44, 45]. This degradation in vigilance over a 2-hour period 

justifies the need to perform studies with even longer vigilance tasks. For example, the 
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average shift length of a UAV pilot is 12 hours for the US Air Force and 8 hours for the 

US Army.  

Cerebral blood flow has been linked to vigilance performance. When parts of the 

brain become metabolically active, the by-product of mental exertion, carbon dioxide 

(CO2), increases [46]. The human body subsequently reacts by speeding up the blood 

flow in that area to remove the waste gas. A previous Transcranial Doppler sonography 

study showed that cerebral blood flow velocity significantly declined linearly over time 

as participants performed vigilance tasks involving signal detections in the auditory 

and visual realms [46]. In addition, participants experienced a general reduction of 

responsiveness in vigilance tasks during four 10-minute tests. The decline in vigilance 

and cerebral blood flow suggests that information processing resources are not 

replenished as quickly as they are consumed over long periods of time.  

Similarly, it has been shown that the electroencephalographic (EEG) power 

spectrum changes accompany minute to minute fluctuations in alertness [47]. Fifteen 

subjects participated in a dual-task simulation of visual and auditory sonar target 

detection. Each subject performed three 28-minute sessions. Accurate, non-invasive, 

nearly real-time estimates of an operator’s global vigilance were measured with EEG 

recorded from only two central scalp sites. Data from sessions where at least 25 lapses 

in target detection were recorded was compared against EEG measurements. Power 

spectra were sorted by local error rate, and EEG power was correlated with changes in 
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error rate. The results showed that a monotonic relationship exists between minute-

scale changes in performance and the EEG spectrum. This research showed that 

changes in alertness can be measured by EEG power spectrum changes. 

Although vigilance has been measured using detection rates and physiological 

signals, it has been suggested that most vigilance studies have been conducted in strict 

laboratory environments with far more stimulus events than are realistic [48]. Instead, 

the number of concurrent operator tasks needs to be minimized for researchers to 

discover subtle changes in operator behavior [48]; that is, the experimental setting needs 

to promote boredom. Others have noted that measuring vigilance in low workload 

experiments is actually linked to boredom measurement [49]. Rather than measuring 

vigilance through response times and physiological recordings, this research focuses on 

measuring vigilance through performance-based and attention-based measures of 

boredom, discussed next.        

2.3 Boredom  

Boredom can be a major problem in the supervisory control setting because 

people become under-stimulated to the point where sustaining mental effort is 

impossible. There is evidence to suggest that task underload results in operator 

performance degradation [50]. It has been suggested that boredom encompasses two 

components: cognitive and affective [51]. The cognitive component comes from an 

operator’s perception of the task at hand. If the task seems unimportant or non-
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challenging, the operator becomes cognitively disinterested. The affective component of 

boredom relates to the operator’s emotional perception. Feelings of frustration, 

dissatisfaction, melancholy, and distraction represent the affective side of boredom [51]. 

The following subsections describe the impact that boredom has on operator 

performance in human supervisory control tasks and present methods for identifying 

boredom. Additionally, boredom proneness as it relates to crew selection and the 

unmanned aerial vehicle domain is discussed. 

2.3.1 Measurable Performance Impact of Boredom 

Performance degradation can be measured as a function of boredom. Air traffic 

controllers in low taskload environments, such as en route monitoring of aircraft, can be 

susceptible to boredom, unlike the busy terminal operators. Studies on ATC monitoring 

tasks showed that participants reporting high boredom were more likely to have slower 

reaction time and worse performance than participants reporting low boredom [52] 

[53]. Similarly, participants who reported higher subjective, task-related boredom also 

had slower reaction times. People recognize when they are bored, as shown by the 

participants’ boredom reports matching their slow reaction times.  

Furthermore, a study of American air traffic controllers showed that a high 

percentage of system errors due to controller planning judgments or attention lapses 

occurred under low traffic complexity conditions [54]. Consequently, system designers 
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need to make an effort to prevent boredom and avoid complacency of controllers in 

order to sustain vigilance in low workload conditions [55]. 

Specific factors influencing boredom and monotony have been examined in the 

context of ATC. It has been suggested that task characteristics (e.g. repetitiveness, traffic 

density) may interact with individual influence (e.g. personality, experience, age) and 

work environment in a way that causes monotony and boredom [16]. This research was 

a first step in examining monotony from a perspective of individual factors in the hopes 

of guiding crew selection, training, and understanding of how individual factors affect 

critical states [16]. In the same way, the research of this thesis seeks to identify 

participants’ characteristics that influence boredom in a low workload environment.     

2.3.2 Identifying and Measuring Boredom 

People show expressions through channels of communication, such as body 

language, facial expressions, tone of voice, and posture, to name a few. Characterizing 

and recognizing the human emotion of boredom is essential for diagnosing workload 

issues in the context of futuristic UxV operations. In a previous study, a three-

dimensional optical flow tracking system was used to rate participants’ boredom levels 

as they watched a stream of boring videos [56]. Two judges watched footage of 

participants watching these boring videos. The judges watched videos of a participant’s 

head and shoulders, and had two screens of footage showing the participant’s left and 

right sides, respectively. The two judges identified events as a team, and then 
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individually rated whether the event showed any change in attention state. The judges’ 

boredom ratings were analyzed in conjunction with head position data to objectively 

identify boredom events. A similar video coding methodology was used in another 

study [57]. Slumping posture from the head position data in conjunction with judges 

ratings of boredom from the participants’ facial expressions indicated when boredom 

was occurring. 

Video coding shows that humans deal with boredom in different ways. Some 

individuals are more prone to boredom than others. Personality, attention span, and 

personal interests can affect whether people become bored easily. A study showed that 

subjects with low boredom proneness outperformed high boredom prone subjects and 

reported less boredom in a flicker detection vigil [58]. Taking into account boredom 

proneness could improve crew selection of monitoring tasks.  

2.3.3 Boredom in Unmanned Aerial Vehicle Domains 

Persistent surveillance is accompanied by persistent, boredom-inducing tasks. 

Boredom is prevalent in unmanned aerial vehicle operations, amid rare and short 

moments of critical, hostile situations. An ex-A-10 pilot flying Predators is  

‚likely to seek out action, for example, by monitoring the banter on the 

secure chat rooms used by commanders to communicate in battle. ‘Highly 

skilled, highly trained people can only eat so many peanut M&Ms or 

Doritos or whatnot,’ he said. ‘There's the 10 percent when it goes hot, 
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when you need to shoot to take out a high-value target. And there's the 90 

percent of the time that's sheer boredom—12 hours sitting on a house 

trying to stay awake until someone walks out [59].’"  

2.3.4 Fatigue 

Fatigue impacts long duration missions, manifested as a lack of mental alertness, 

regardless of the level of workload being expended throughout the mission. Fatigue, 

like boredom, becomes a primary problem in supervisory control of multiple 

unmanned vehicles. Fundamentally, fatigue is driven by a chronic lack of sleep. 

However, a relationship exists between boredom and fatigue.  

In a Predator operations study, ‚graphical analysis of subjective boredom ratings 

found 92 percent of pilots reported ‘moderate’ to ‘total’ boredom‛ [60]. It is interesting 

that a study focused on researching fatigue also showed high ratings of subjective 

boredom. The boredom caused slower responsiveness, which resulted in problems with 

performance and crewmember morale.  

Merely limiting flying time of shift workers proved to be a poor safeguard 

against fatigue. Even a four-hour work shift still resulted in fatigue and boredom [60]. 

The harmful effects of fatigue and boredom must be investigated before futuristic, 

highly-automated operations of multi-UxV control become reality.    
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2.4 Empirical Evidence for Possible UxV Vigilance Problems 

A previous study that attempted to examine the impact of moderate workload in 

supervisory control of multiple UxVs yielded unexpected results that suggest vigilance 

and boredom could be significant factors in such an environment. This experiment was 

conducted using the Onboard Planning System for Unmanned vehicles Supporting 

Expeditionary Reconnaissance and Surveillance (OPS-USERS) test bed [61]. The 

simulation allowed a single operator to supervise multiple autonomous UxVs in a 

search, track, and destroy mission. The operator was assisted by an automated planner 

for scheduling the UxVs’ search, track, and destroy tasks. In addition, a decision 

support tool allowed the operator to alter automation-driven schedules and approve 

desired plans. As will be discussed in detail, even in a moderate workload study, there 

was evidence to suggest that vigilance could be a problem in supervisory control of 

multi-UxVs. 

The objective of the operator was to command multiple, heterogeneous UxVs for 

the purpose of searching the area of responsibility for hidden targets, tracking targets, 

and approving weapons launches [26]. The UxVs in this experiment included two 

rotary-wing Unmanned Aerial Vehicles (UAVs), one Unmanned Surface Vehicle (USV), 

and a Weaponized Unmanned Aerial Vehicle (WUAV). Once a target was found, the 

user designated the target as hostile, unknown, or friendly, and assigned it a priority 

level. One or more UxVs continually revisited hostile targets to track their positions 
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until the WUAV was able to destroy the hostiles. Operators were required to approve 

all weapon launches from the WUAV. Unknown targets were also revisited as often as 

possible, tracking the targets’ movements. Provided with intelligence via a chat box, the 

operator could re-designate unknown targets as hostiles or friendlies. The operators 

could create search tasks, given unsearched locations on the map, for UxVs to explore. 

The operators spent much of the mission time monitoring the system, while the auto-

planner prompted replanning sessions for re-evaluating the unassigned tasks that 

needed to be scheduled.  

2.4.1 Experimental Apparatus 

The interface details can be found in Appendix A. Figure 3 shows the top layer 

display of the human-computer interface (HCI) that was used for this study. This top 

layer display, known as the Map Display, shows symbols representing the UxVs, search 

tasks, loiter tasks, and targets.  

A birds-eye view of the mission area is shown with representational symbols of 

UxVs, targets, tasks, etc. The symbols correspond with Military Standard 2525 [62]. 

These symbols include:  UxV symbols that represent the four vehicles moving over the 

map; search task symbols, which are markers on the map that represent an operator-

designated location for the UxVs to explore in search of hidden targets; target symbols 

such as hostiles, unknown targets, and friendlies found roaming the map that are to be 

tracked; and loiter symbols, or points on the map for the weaponized vehicle to 
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Figure 3: Map Display 

hover over while waiting to destroy the next hostile target. The upper right-hand corner 

of the Map Display is equipped with a mini map that shows the symbols for UxVs, 

search and loiter tasks, and targets as they appear on the map. Since the Map Display 

can be zoomed in, it is convenient to glance at the mini map for a quick view of the 

overall picture. This feature can be turned off by un-checking the mini map box above 

the mini map itself.  

The UxV timeline at the bottom of the Map Display gives temporal event 

information for the next five minutes into the future, indicated in military time. Green 

bars in the interface indicate times of refueling, and blue bars indicate times of 

performing a task. The letter of the task (whether a search task or target-tracking task) 

Replan 
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appears in the blue bar. White space indicates vehicle idle time or travel time between 

tasks. The timeline moves to the left as time progresses.  

The lower left-hand corner of the Map Display portrays a performance plot, 

shown in Figure 4. The automation analyzes the current schedule, predicts mission 

performance by the end of the mission time, and calculates a score. The score is 

calculated based on a non-dimensional cost function that accounts for task priority and 

completion, target tracking, hostile target destruction, and coverage area. The red score 

represents the automation’s predicted score. The blue score represents the actual score 

attained by the human-automation system. When the predicted score surpasses the  

                                            

Figure 4: Performance Plot 

actual score, the auto-planner is proposing that better performance could be achieved if 

the operator accepts the proposed plan. On the other hand, when the actual 

performance exceeds the predicted curve, the human operator has changed the tasking 

in a way that results in better system performance than the automation predicted [63]. 

The performance plot moves to the right as the score changes over time. 
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The command center sends intelligence information to the operator via the chat 

message box located in the lower right-hand corner of the map display. The chat 

message box shown in Figure 5 gives important information dictating priority levels for 

targets. Chat messages are accompanied by an auditory tone common to modern-day 

instant messaging programs. In addition, the chat box outline blinks until the operator 

acknowledges the received message by clicking in the chat box. Sometimes chat 

messages require responses to questions, such as, ‚How many targets have been 

found?‛ The operator must type the answer in the message input window and click 

‚send.‛ 

 

Figure 5: Chat Message Box  

2.4.2 Operator Tasks 

The main tasks for the operator include: creating/editing/deleting search tasks, 

identifying targets, replanning, and destroying hostile targets.  
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2.4.2.1 Search 

A primary mission objective is to search uncharted territory. The UxVs 

automatically search the area of interest using their own onboard computer search 

algorithm, which is an A* search method. However, it has been shown that systems 

with human operators are better than purely automated systems at ensuring the entire 

map area is covered in the search [26, 63]. The operator can create a search task at a 

particular location by right clicking the location on the map, which brings up the search 

task creation window, shown in Figure 6. The operator designates the priority level and 

temporal requirements of the search task. The operator can also create loiter tasks using 

the search task creation window. Right clicking an existing search task allows the 

operator to edit using the same window.  

 

Figure 6: Search Task Creation Window 
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2.4.2.2 Identify Targets 

The UxVs have automatic target detection capability in the futuristic scenario of 

the OPS-USERS simulation. The target identification window pops up automatically 

when one of the UxVs discovers a target. For experimental purposes, the target 

identification task was simplified to recognizing the target symbols rather than 

analyzing actual imagery. The operator must pan through the target identification 

window until the target symbol becomes visible. The operator then classifies the target 

symbol as hostile, unknown, or friendly and designates a priority level of high, 

medium, or low priority using intelligence information from the chat message box. 

Figure 7 shows the sequence of target identification.  

 

Figure 7: Target Identification Window Sequence 
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2.4.2.3 Approve Weapons Launch 

When a target is identified as hostile, it must be destroyed by the WUAV while being 

tracked by the UxV that found it. Operator approval must be given before the WUAV is 

allowed to destroy a hostile target. The missile launch approval window shown in  

Figure 8 pops up automatically when the WUAV sights the hostile target for 

destruction. 

                                 

Figure 8: Missile Launch Approval Window 

The operator must pan the screen for a direct view of the target and click the red 

‚approve launch‛ button to destroy the target. 

2.4.2.4 Replan 

The automation prompts the operator to replan by approving new UxV 

schedules. However, the operator can also initiate the replanning. Given the current 

schedule, the automation’s proposal, and potentially changing mission priorities, the 
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operator can change UxV schedules via the replan display. The replan display is a 

decision support tool known as the Schedule Comparison Tool (SCT), shown in  

Figure 9. The green ‚replan‛ button at the bottom left corner of the Map Display shown 

in Figure 3 allows the user to view the SCT.  

All mission objectives, including search tasks and targets to be tracked and/or 

destroyed, are either assigned or unassigned via the SCT. The gray areas around the 

black ‚assign‛ triangle in the SCT display the tasks not yet assigned to any UxVs. 

Operators are able to click and drag unassigned objectives into the central ‚assign‛ area, 

essentially querying the automation about whether the particular objective can be 

assigned. Sometimes not all tasks can be assigned. Subsequently, the new assignment of 

a task can cause other tasks to become unassigned. Tasks that can no longer be assigned 

pop out of the black ‚assign‛ area and move to the gray area of unassigned tasks. 

The three geometrical forms at the top of the SCT are configural displays and 

show three schedules. The dark gray form on the left is the current schedule being 

carried out by the UxVs. The green form on the right is the newest proposed schedule 

from the automated planner. The blue schedule in the center is the working schedule 

that results from the user querying the automation to assign particular tasks. Thus, the 

proposed schedule represents a highly automated solution; the working schedule 

promotes a more collaborative effort between the human and computer, which has been 
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shown to improve operator performance and situational awareness in similar complex 

settings [65-67]. 

 

 

Figure 9: Schedule Comparison Tool 

Each configural display is composed of two parts: an upper rectangle and a lower 

rectangle separated into three bars. The configural display is shown in Figure 10. The 

top rectangle represents the map area that will be covered for a given schedule. The 

more colorful the area, the better searched the map will become using that schedule. 

The bottom hierarchy of bars shows the percentages of high, medium, and low priority 
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tasks to be completed for a given schedule. The more color-filled a bar appears, the 

more of that task priority is being done. When a task is assigned, the corresponding 

bar changes shape with a ghosting effect in order to visually draw attention to what has 

changed. The white overlay shown in the high priority bar of Figure 9 is the result of 

the ghosting effect. This white overlay depicts the previously smaller percentage of high 

priority tasks being assigned. 

 

Figure 10: Configural Display 

2.4.3 Moderate Workload Experimental Results 

The original study of moderate workload on the OPS-USERS testbed yielded 

interesting results that motivated this research on low workload. The moderate 

workload replan interval experiment assessed operator workload and performance in 

three automation-generated replan intervals. Specifically, the rate at which the operator 

was required to collaborate with the automation using the SCT was modulated over 
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three experimental trials. The intervals for replanning were 30 seconds, 45 seconds, and 

120 seconds. The order was counterbalanced across the test sessions for thirty-three 

participants [26].  

This study showed that people performed better when they worked with the 

automation’s prescribed replanning rates, rather than ignoring the automation and 

operating under their own discretion for when to replan [63]. The interesting result 

from this experiment that motivated this thesis research is that even though participants 

who consistently responded to the automation’s replan prompts, deemed consenters, 

were unable to maintain the automation’s prompted replanning rate at the lowest 

interval of 120 seconds; that is, the consenters of the experiment replanned more often 

when the automated replan interval fell below a comfortable threshold of workload. 

This finding shows that humans have difficulty maintaining low levels of workload, 

and further research was needed for the low workload scenario of this simulation. 

2.5 Research Questions 

The five research questions this thesis seeks to answer aim to explore different 

facets of the overall question: how do people behave under long duration boredom?  

This study is retrospective in nature, and these research questions are provided in order 

to approach the research in a specific, measurable way. A hypothesis was devised for 

each research question to help guide the analysis, but not limit it. These questions are as 

follows: 
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1. Does the Yerkes-Dodson curve hold true for low workload? 

It has already been shown that high workload does cause performance to 

plummet, and the Yerkes-Dodson curve is valid for high workload conditions [24] [25] 

[26]. However, the amount of research conducted in long duration, low workload 

environments for human supervisory control is small [14, 15]. Persistent surveillance 

tasks and sustained monitoring tasks are common in human supervisory control 

settings. With these jobs becoming ever more prevalent as automation increases, the 

effect of sustained low workload on performance needs to be understood [13]. Does low 

workload really cause performance in supervisory control to plummet as the Yerkes-

Dodson curve suggests? It is hypothesized that low workload data from this experiment 

will show that the Yerkes-Dodson law is not correct for low workload. 

2. How does low taskload affect operator utilization? 

This research seeks to identify how participants react to low system requirements 

of taskload. Will participants become disinterested and let their interactions with the 

interface fall below the required amount to perform tasks? Will participants 

overindulge in interacting with the system in order to stay alert? In this study, 

participants have the freedom to interact with the system as much or little as they 

please. This experiment is a unique opportunity to learn about human nature by 

studying human-system interaction levels under low workload conditions. It is 
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hypothesized that taskload, modulated by replan interval in this low workload study, 

will have a positive relationship with utilization, or total interactions with the system.  

3. How does the low workload environment affect operator attention? 

Knowing how low workload affects performance and utilization is not enough. 

Understanding attention allocation is key to discovering the toll that sustained low 

workload takes on human operators. It is hypothesized that operators will spend most 

of their time in divided attention (coping with boredom by multitasking), some of their 

time completely distracted (due to boredom), and the least amount of their time in 

directed attention (because of low workload and disinterest). 

4. Can performance be predicted in a low workload environment? 

Being able to predict performance in persistent surveillance tasks could be a 

tremendous benefit to the supervisory control domain. Predicting performance could 

lead to preventing vigilance decrements and fatal errors before they happen. In order to 

predict performance, attention allocation as it relates to utilization and performance will 

be investigated. Perhaps performance can be predicted knowing how focused a person 

is apt to be. It is hypothesized that operators with higher percentages of directed 

attention will perform better, as predicted by statistical models.  

5. Does vigilance decrease over time? 

Vigilance decrements are often associated with long duration, supervisory 

control tasks. But does this phenomenon really occur? It is important to research what 
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really happens to an operator’s sustained alertness in the context of a multiple UxV 

mission setting, since this scenario is the future of unmanned vehicle operations. The 

literature review revealed that current measures of vigilance create an unrealistic 

testing environment, and a boredom study is needed to discover subtle changes in 

behavior and effectively assess vigilance [48]. Accordingly, it is safe to assume that 

vigilance can be measured by attention state changes from hour to hour. It is predicted 

that operators’ amounts of directed attention per hour will decrease with each 

subsequent hour. It is hypothesized that, in this way, vigilance will decrease over time. 

 These research questions stem from the three pillars of the background 

presented in this chapter: workload, vigilance, and boredom. The following chapter 

describes the methodology for answering these research questions and creating an 

overall assessment of the impact that low workload has on supervisory control of 

networked unmanned vehicles.  
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3 Methodology 

This chapter describes the long duration, low taskload human performance 

experiment used to test the research hypotheses detailed in the previous chapter. 

Thirteen groups of 3 participants endured a 4-hour experimental session acting as 

independent operators engaged in supervisory control of networked UxVs. The 

simulation was a search, track, and destroy mission conducted on the OPS-USERS 

testbed detailed in Chapter 2. This chapter discusses participant information, the 

apparatus, testing procedures, and experimental design.  

3.1 Participants 

Thirty-nine participants were tested 3 at a time. Complete test data was collected 

for 30 participants, which included 11 females and 19 males. Data from 9 of the 

participants was incomplete or unusable because of system software failures. Forty-

three percent of the participants had military experience. Participant age ranged from 

19 to 32 with a mean of 23 years of age and a standard deviation of 3 years; this age 

range is typical of current unmanned vehicle operators in the military. Each participant 

was classified as either a ‚gamer‛ or ‚non-gamer‛ based on their video gaming 

experience revealed in the demographic survey. Participants who played games more 

than once a week were considered gamers. Each participant signed a consent form, 

shown in Appendix B.  
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Sixteen of the 39 participants originally participated in the moderate workload 

study discussed in Chapter 2. The remaining 23 participants received equivalent 

training on the moderate workload testbed. New participants learned about the 

interface via the self-paced tutorial used for the moderate workload experiment and 

participated in a mock-experiment on the moderate workload testbed for a total of 

approximately 1.5 hours. This training was performed to ensure consistency of practice 

among all participants for this long duration, low workload study.  

3.2 Apparatus 

This section focuses on the modifications made to the OPS-USERS system for 

converting it to a long duration, low taskload scenario. The test session for this 

experiment lasted 4 hours, as opposed to the 10-minute session in the moderate 

workload study [26]. Each participant only performed one 4-hour test session for a 

given replan interval. Each operator workstation included two 17-inch Dell TFT LCD 

monitors connected to a Dell Dimension tower containing a Pentium D 2.80GHz CPU 

and 2.00 GB ram. The interface was displayed on the left monitor with the right monitor 

being open for participant prerogative use. 

To make the workload lower than the moderate workload study, the unmanned 

vehicles moved 10 times more slowly across the map. It took almost an hour for a 

vehicle to move from one side of the map to the other, which appeared extremely slow 

since it only took a couple of minutes for a vehicle to traverse the map in the moderate 
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workload study. The scenario also had only 4 hidden targets to find in the 4-hour 

mission, unlike the 10 targets in the ten-minute moderate workload scenario. Moreover, 

the participants were prompted to replan only once every 10 minutes, 20 minutes, or 30 

minutes, depending on their issued replan interval, as opposed to every 30 seconds, 45 

seconds, or 120 seconds in the moderate workload scenario. All of these modifications 

to target number, vehicle speed, and replan interval were done in an effort to center the 

participants’ workload around 10% utilization, unlike the 70% utilization goal in the 

moderate workload scenario. The target utilizations for the three replan interval groups 

were 15%, 10%, and 5%. 

An additional way of maintaining low operator taskload throughout the entire 

session was to ensure that the 4 targets could not be found all at once. One of the 4 

targets was ‚uncloaked‛ at the beginning of each hour. Thus, if an operator was able to 

use his or her vehicles to search the entire map area within the first hour, only one 

target would be found and identified, leaving the other 3 targets hidden until their 

future ‚uncloaking‛ times. This ‚uncloaking‛ activity ensured consistently low 

workload for operators throughout the 4-hour study. The participants were unaware 

that targets remained hidden and only emerged later in the simulation.  

3.3 Experimental Procedure 

The 4-hour, low workload test session was prefaced by pre-experiment 

paperwork, including consent forms, demographic and training surveys. Participants 
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were tested 3 at a time, but each performed separate simulations. Participants were 

knowingly videotaped during the test session to capture behaviors exhibited 

throughout the study, as shown in Figure 11. Workload and performance metrics were 

collected automatically by the simulation without interrupting the participants.  

3.3.1 Paperwork and Practice 

Participants completed a demographic survey, which can be found in Appendix 

C. Details about the demographic results can be found in Appendix D. After completing 

the paperwork prior to the experiment, participants completed a self-paced, refresher 

tutorial and were allowed to ask questions. Following the self-paced refresher tutorial, 

all three participants completed an interactive practice session during which they 

practiced all of the tasks that would be required during the four-hour test session. 

Participants could practice as long as needed to feel comfortable with the interface, 

usually about 10 minutes. After practicing, each participant filled out an exit form that 

illustrated his or her confidence level in understanding the interface and mission 

scenario. The exit survey for interface understanding can be found in Appendix E. The 

overwhelming majority of participants answered ‚confident‛ or ‚very confident‛ (with 

only 6 of 39 feeling ‚somewhat confident‛) and indicated they understood the interface 

functionalities. Any problem areas were covered again. After all questions were 

answered, the test session commenced.  
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3.3.2 Test Session 

Three participants were tested at a time in a mock command and control center 

shown in Figure 11. All operators’ scenarios were independent of one another; i.e., there 

was no need or opportunity for collaboration designed into the scenarios. Because of the 

long duration of the study, three participants were tested at a time, both to reduce 

overall experiment time and to provide possible sources of distraction. Unmanned 

vehicle operating environments typically contain multiple personnel who are often 

responsible for dissimilar tasks, so this environment was representative of typical 

command and control centers. Each participant assumed supervisory control of their 

own set of 4 heterogeneous, unmanned vehicles in their own territory. 

 

Figure 11: Three Subjects in the Test Room 
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Participants assumed limited control over the UxVs, assigning search and target-

tracking tasks to the system network but not to particular UxVs. This lack of direct 

control was identical to that of the moderate workload experiment discussed in Chapter 

2. Participants employed a weaponized unmanned aerial vehicle to destroy hostile 

targets. The underlying automation concurrently analyzed the mission as it progressed 

and proposed new plans at predetermined intervals. The participants viewed these 

proposals via the SCT interface shown in Figure 9, which allowed them to edit and 

accept the new plans. 

Potentially distracting material was available to the participants during the 

experiment, such as internet access via one of the workstation interfaces that was not in 

use, magazines, refreshments, anything the participants had with them in their 

backpacks (including cell phones or books), and each other. Refreshments were 

provided to the participants, and the same food varieties were served to all participants. 

Participants could bring their own lunches if they so desired. Each set of 3 participants 

was left alone in the mock command and control room during the study. However, 

participants were knowingly videotaped for the duration of the study. In addition, 

screen capture software was used to record the interface interactions. The test 

administrators remained in an adjacent room and came into the test room 4 separate 

times to check on the participants throughout the study duration. During the 

experiment, participants could leave the test environment to go to the restroom at any 
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time; in this case, the test administrator paused the simulation in order to preserve the 

participant's data. Upon return, the experiment administrator informed the participant 

that the scenario remained stable and uneventful during his or her absence, and the 

participant resumed the simulation. Participants only left the room to go the restroom. 

Thirty minutes prior end of the simulation, the timeline grayed-out, indicating that no 

future events were visible as the simulation came to a close. 

Following the test session, participants filled out a survey, where they indicated 

how busy they felt, their confidence in the actions they took, and how well they felt they 

performed. The post-experiment survey can be found in Appendix F. They also 

indicated whether they were distracted or not, and listed any distractions they 

encountered during the test session. Participants were compensated $125 for their 

efforts and were also eligible to win a $250 Best Buy gift card for the best performance. 

3.4 Experimental Design 

This long duration, low taskload simulation was designed to investigate low 

workload as it relates to operator performance. Taskload was controlled by simulation-

prompted events that required major decision making. The experiment was originally 

designed to be statistically evaluated using a One-way Analysis of Variance (ANOVA) 

model with 3 factor levels represented by the 3 replan intervals. 
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3.4.1 Independent Variable 

The independent variable for this experiment was the replan interval, or the rate 

of how often the participant was prompted to collaborate with the automation in 

schedule decision making. Each participant was given a fixed replan interval of either 

10 minutes, 20 minutes, or 30 minutes; these replan intervals were intended to induce 

utilization levels of 15%, 10%, and 5%, respectively. This prediction was estimated 

based on the previous study and pilot testing of the low taskload scenario. 

3.4.2 Dependent Variables 

The dependent variables include objective workload, objective performance 

metrics, subjective self-rated performance metrics, and attention state metrics obtained 

via video data. 

3.4.2.1  Workload Metrics: Utilization                                                                                              

Utilization, or percent busy time, has been used to detect subtle changes in 

workload during time-pressured scenarios, similar to this OPS-USERS experiment, in 

which the operator has multiple objectives to perform [24, 64].  Utilization is measured 

by calculating the ratio of the total service time for all events to the total mission time.  

In this experiment, utilization accrues anytime the operator is in the SCT window, 

target identification window, search task window, missile launch approval window, or 

reading or answering a chat box message. Three types of utilization are explored in this 

study: (1) required utilization, or the percentage of mission time the operator spends 
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performing mandatory tasks required by the system; (2) self-imposed utilization, or the 

percentage of mission time the operator spends doing tasks that are the operator’s 

prerogative; (3) total utilization, which is also the sum of required and self-imposed 

utilization. In addition, a self-rated busyness 5-point Likert metric was collected as a 

subjective measure of workload.  

3.4.2.2 Performance Metrics 

The following twelve dependent variables measuring various forms of 

performance are classified into evaluation categories for human-automation 

performance metrics [65]. Each dependent variable is organized by human supervisory 

control metric class and described. The dependent variables for this experiment are 

well-rounded since all metric categories are represented.  

Mission Effectiveness 

 The mission effectiveness metrics are the three primary performance measures of 

this experiment because they represent the key mission parameters of search, track, and 

destroy. 

• Target Finding Score: speed of finding targets and quantity of targets found.  

Target finding score is calculated as follows: 

 
𝑑𝑖
𝑎𝑖

𝑖
𝑖=1

𝐹
                                                                           (1) 



54 

 

where 

d = time to detect a target 

a = time target was available to be found 

F = number of targets found 

i = a target that was found; 1 ≤ i ≤ 4 

This equation yields scores ranging from 0 to 4, where a lower value is better.  

Four is the worst possible target finding score. The target finding score is computed 

using this equation when a participant finds between 1 and 4 targets. If the participant 

finds no targets, that participant receives a score of 4. 

• Target Tracking Percentage: percentage of time targets are tracked. 

Target tracking percentage is calculated as follows:  

 𝑡𝑖
𝑖
𝑖=1

 𝑎𝑖
𝑖
𝑖=1

                                                                     (2) 

where 

t = total time a target was tracked 

a = time target was available to be tracked 

i = a target that was found; 1 ≤ i ≤ 4 

This equation yields percentages between 0% and 100%, where 100% is the best  

possible continuous target tracking percentage. If a participant finds no targets, that 

participant receives a target tracking percentage of 0%. 
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• Hostile Destruction Score: speed and quantity of hostile destructions. 

Hostile destruction score is calculated as follows: 

 
𝑑𝑖
𝑎𝑖

𝑖
𝑖=1

𝐷
                                                                    (3) 

where 

d = time to destroy a hostile 

a = time hostile was available to be destroyed 

D = number of hostiles destroyed 

i = a hostile that was destroyed; 1 ≤ i ≤ 2 

This equation yields scores ranging from 0 to 2, where lower is better. Two is the  

worst possible hostile destruction score. The hostile destruction score is computed using 

this equation when a participant finds between 1 and 2 targets. If the participant 

destroys no hostiles, that participant receives a score of 2. 

Human Behavior Efficiency 

 Each of the following metrics represents information processing efficiency: 

• Average Prompted Search Reaction Time: average time to create a search task 

after chat box prompting 

• Average Chat Reaction Time: average time to answer a chat box question  

• Average Replan Reaction Time: average time to click on the blinking replan 

button when prompted by the automation 
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Human Behavior Precursors  

The following cognitive precursors measure situational awareness: 

• Chat Accuracy: percentage of correct answers to chat box mission awareness 

questions 

• Prompted Search Accuracy: percentage of correctly placed prompted search 

tasks 

Collaborative Metrics—Human/Automation Collaboration 

 Each of the following metrics falls into the collaboration with automation 

category because they represent extra, operator-driven events that involve interaction 

with the automation. The participants chose to interact with the automation more than 

required, which indicated desire to collaborate with the automation. 

• Number of Search Tasks Created: total operator-created search tasks 

• Extra Search Tasks: total operator-generated search tasks; not chat box prompted 

• Extra Replans: total operator-generated replans; not prompted by the automation 

• Extra Target Edits: total operator-generated uses of the target identification 

window    

3.4.2.3 Attention State Metrics 

Video data provided a means of measuring the participants’ attention states at all 

times during the experiment test session. Each participant’s time was categorized into 

percentage of time spent in (1) directed attention, or appearing focused on the interface; 
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(2) divided attention, or multitasking while still paying attention to the interface; and (3) 

distracted attention, or doing anything other than monitoring or interacting with the 

simulation interface. The attention states are further subcategorized into physiological, 

social, or cognitive. The criteria for video coding the participants’ time into these 

categories are as follows: 

1). Directed Attention 

The participant appears focused and is only monitoring or interacting 

with the interface and not doing any other task. 

2). Divided Attention  

The participant has eyes on the interface screen, but multitasks in the 

following ways. 

2p). Physiological diversions (examples: yawning, eating, fidgeting, 

stretching, and scratching) 

2s). Social diversions (examples: talking, glancing at each other) 

2c). Cognitive diversions (playing Minesweeper or flash games on the 

same screen as the simulation interface) 

3). Distracted Attention 

The participant is not paying attention to the interface at all. 

3p). Physiological distractions (examples: sleeping, eating a meal without 

looking at the interface) 
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3s). Social distractions (examples: discussions with participants' backs 

turned to the computer) 

3c). Cognitive distractions (reading a book, using the internet or other 

applications on the second screen, checking email and phone messages 

without looking back at interface) 

 Video coding software was used to take notes on how each participant allocated 

his or her attention throughout the 4-hour test session. The instant a participant began 

performing a particular action, a time-stamped note was taken to categorize the action 

into one of the aforementioned attention states. The video coding method produced 

100% agreement across 3 raters for 5/30 video files due to the objective, rule-based 

rubric.  The time between time stamps was counted as the amount of time the 

participant was in that particular attention state.  

3.5 Methodology Summary 

The OPS-USERS testbed was altered to create a long duration, low taskload 

scenario. Experimental data was collected for 30 participants of ages comparable to 

military unmanned vehicle operators, including metrics of workload, performance, 

video data, and demographic data, which included a self-assessment of gaming 

experience and comfort level with computer programs. Three participants performed 

their supervisory control missions at the same time in a simulated control room that 

had possible distractions, including each other. The independent variable for 
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controlling the experiment was the replan interval, which was the time participants 

were prompted to evaluate a plan generated by the automation. The primary 

performance metrics focused on search, track, and destroy speed and quantity. Other 

performance metrics included reaction times and accuracies to prompted events. Extra 

instances of interacting with the automation were also measured to gauge self-imposed 

types of workload. The results of this experiment will be discussed in the next chapter. 
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4 Results and Discussion 

This chapter discusses the impact of the long duration, low workload experiment 

on operators’ utilization, attention, and performance. The statistical results from the 

analysis are provided, followed by discussion. This chapter addresses the five research 

hypotheses: (1) the performance of operators at low workload will not follow the 

Yerkes-Dodson curve; (2) taskload will have a positive, linear relationship with 

utilization; (3) boredom will affect attention state by decreasing directed attention; (4) 

directed attention will improve performance; and (5) vigilance will decrease over time. 

Each of these five hypotheses corresponds to the five main research questions. In 

addition, a top performer analysis is discussed. Finally, a performance comparison is 

made between this low workload experiment and the previously-discussed moderate 

workload study. Overall, this study seeks to determine how human subjects behave 

under long duration boredom in a multi-UxV mission.  

4.1 Utilization 

The first two research questions investigated in this study involve utilization, or 

the percent busy time, excluding monitoring time. The Yerkes-Dodson curve predicts 

that performance degrades as workload decreases [20]. The first research question 

sought to determine whether the Yerkes-Dodson curve prediction is accurate, 

specifically in human supervisory control situations of low workload. It was 

hypothesized that the performance curve will become horizontal as the curve 
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approaches the lowest workload. The second related research question considered how 

taskload affects operator utilization, the workload metric. It was hypothesized that 

taskload would affect utilization with more taskload causing higher utilization.  

To test both of these utilization hypotheses, the experimental control for 

workload involved 3 levels of required utilization, modulated by the independent 

variable, replan interval. Participants replanning at the 10-minute replan interval were 

required to replan twice as often as the 20-minute interval group and three times more 

frequently than the 30-minute interval group. The 30-minute replan interval was 

designed to produce operator utilizations around 5%; the 20-minute replan interval was 

predicted to result in operator utilizations close to 10%; and the 10-minute replan 

interval was designed to place operator utilization at 15%.  

Even though participants were grouped into 3 different levels of workload, an 

interesting result occurred; regardless of the fact that some participants were given 

more taskload than others, they all gravitated to the same narrow range of utilization: 

an average of 11.4% with a standard deviation of 3.36%. A non-parametric test, the 

Kruskal-Wallis test, showed that utilization was not statistically different across the 3 

replan intervals (χ2 = 0.135, p = 0.935). Hence, utilization was not dependent on replan 

interval. Due to the extremely low workload nature of the study, participants interacted 

with the simulation as much as they pleased, regardless of the lower required 

utilization controlled by certain replan intervals.  
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Since the replan interval groups did not have significantly different utilizations, 

the low workload end of the Yerkes-Dodson curve was neither confirmed nor 

disconfirmed by the experimental design for this research. Figure 12 shows the average 

utilization and overall performance for all 30 participants. The overall performance  

 

Figure 12: Utilization versus Performance 

metric is based on target finding score (Equation 1) summed with hostile destruction 

score (Equation 3) and normalized so that a higher performance value is better with 8 

being the highest possible score. The search and destroy performance metrics were 

chosen to represent participant performance because the system performance in these 

tasks depends most on operator interactions. Target tracking is highly automated and is 

not included in measuring human performance. The data in Figure 12 did not confirm 
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the inverted ‚u-shape‛ curve for utilization versus performance as the Yerkes-Dodson 

curve suggests, due to the large variability in performance scores.  

A deeper investigation of utilization was necessary to determine why operators 

gravitated to a common utilization in the long duration, low taskload environment. All 

participants purposely over-utilized themselves by interacting with the system more 

than the mission requirements dictated. This over-utilization may be due to the extra 

cognitive capacity that the participants had during the low workload scenario.  The 

important aspect of this finding is that utilization can be categorized into two 

subcategories of utilization: required utilization and self-imposed utilization.  

Required utilization is the percentage of time a participant was required to spend 

interacting with the simulation, based on replan interval, number of search tasks 

created that were prompted by the command center, number of targets found that 

required identification, and number of hostiles destroyed that required operator 

approval. Each participant’s required utilization was specific to the replan interval 

independent variable. However, even participants who were required to replan at the 

same intervals had different required utilizations because each participant had a 

slightly different situation based on how many targets they found, how many hostiles 

they destroyed, and how long they spent performing each event.  

In contrast, self-imposed utilization is the percentage of time a participant 

interacted with the interface by doing activities that were not required by the mission. 
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Self-imposed utilization activities include extra replanning, creating participant-

generated search tasks, and additional uses of the target identification window for 

editing target designation. 

On average, participants were required to be 1.87% utilized (s.d. 0.49%), yet the 

average total utilization was 11.4% (s.d. 3.36%). The average self-imposed utilization 

was 9.53% (s.d. 3.33%), which is five times more utilization than required by the mission 

scenario.  

As with total utilization, participants gravitated toward the same level of self-

imposed utilization. The Kruskal-Wallis test showed that self-imposed utilization was 

not statistically different across the three replan intervals (χ2 = 0.439, p = 0.803). 

However, the three different replan intervals caused significantly different required 

utilization (χ2 = 16.579, p < 0.001). The 10-minute interval group had an average of 2.41% 

required utilization (s.d. 0.46%), the 20-minute interval group had an average of 1.69% 

required utilization (s.d. 0.14%), and the 30-minute interval group had an average of 

1.58% required utilization (s.d. 0.36%). The bar chart in Figure 13 shows the average 

amount of total utilization, categorized into self-imposed and required utilization, for 

each of the three replan intervals.  

The 10-minute interval group had the highest required taskload and the 30- 

minute interval group had the lowest required taskload. In effect, the independent 

variable caused different levels of required utilization, but not total utilization. The  
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hypothesis that taskload will affect utilization only holds true for required utilization (χ2  

= 16.579, p < 0.001), but not for total utilization (χ2 = 0.135, p = 0.935) or self-imposed 

utilization (χ2 = 0.439, p = 0.803).. Rather, because participants engaged in self-imposed 

utilization, the total utilization was not affected by replan interval. At low taskload, 

 

 

Figure 13: Utilization by Replan Interval 
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operators created extra work for themselves. This finding shows that humans do not 

comfortably operate at low workload and that they crave at least a moderate level of 

workload to sustain their attention.  

4.2 Attention 

The third research question investigated how the low workload environment 

affected operator attention. The associated hypothesis predicted that operators would 

spend most of their time in divided attention (in an effort to continue paying attention 

but coping with the boredom by multitasking), some of their time completely distracted 

(due to boredom), and the least amount of their time in directed attention (because of 

low workload and interest). 

As described in Chapter 3, directed attention is the amount of time that 

participants directed their attention toward the interface.  Divided attention represents 

time that the participants spent multitasking physically (such as eating or stretching), 

socially (such as talking over their shoulder or quickly glancing at one another), or 

cognitively (such as playing Minesweeper on top of the interface). All divided attention 

state subcategories involve participants maintaining visual contact with the interface 

and paying attention to the mission in some capacity. Anytime the participants were 

not looking at the interface is considered distracted in one of three categories: physically 

(such as sleeping or going for a snack), socially (such as talking to each other or on the 

phone with their backs toward their interfaces), or cognitively (such as reading, texting, 



68 

 

playing games, checking email, or browsing the internet). All of these coping actions 

occurred at least once. 

Video coding analysis showed that participants spent an average of 34% (s.d. 

15%) of their time in a directed attention state, 22% (s.d. 13%) of their time in a divided 

attention state, and 44% (s.d. 20%) of their time distracted. Figure 14 illustrates the 

average attention allocation of participants during the long duration, low workload 

experiment. 

 

Figure 14: Attention State Allocations 

The non-parametric Friedman test showed that these three percentages of 

attention allocation are statistically different (χ2 =8.267, p = 0.016). Three more tests were 

run on this attention allocation data to determine the pairwise comparisons, making the 

family-wise error value α = 0.026 for significance. The aforementioned Friedman test 
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met this threshold for significance. The Wilcoxon Signed Ranks test was used compare 

the attention states. The results are shown in Table 1.  

Table 1: Attention State Pairwise Comparisons 

Attention State Comparison Z p 

Directed > Divided -2.828 0.005 

Distracted > Divided -3.260 0.001 

Distracted > Directed -1.656 0.098 

   

The pairwise comparisons involving divided attention are clearly statistically 

significant because they not only meet the α = 0.1 for non-parametric testing but also the 

family-wise error α = 0.026. On the other hand, the comparison between distracted and 

directed attention only meets the α = 0.1 significance level for non-parametric testing. 

Overall, it is seen that participants spent significantly different amounts of time among 

the three primary attention states. 

These attention state allocation results did not match the hypothesis that 

participants’ attention would be allocated in order from highest to lowest: divided, 

distracted, and then directed. In fact, directed attention was not the lowest amount of 

attention; divided attention was the least likely, and participants spent the least amount 

of time multitasking. While enduring such a long duration, low workload simulation, it 

is surprising that participants were able to spend so much of their time in directed 

attention toward the simulation. The $250 Best Buy gift card reward enticed the 

participants to put forth more effort than expected in this boredom study. However, 
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participants were distracted for the majority of the time, and divided attention in 

multitasking was the least likely attention state.  

The descriptive statistics of the sub-categories of the 3 attention states are shown 

in Table 2. 

Table 2: Attention State Descriptive Statistics 

Attention State N Minimum Maximum Mean Std. Deviation 

Divided Socially 30 .00 .10 .03 .03 

Divided Physically 30 .03 .55 .17 .13 

Divided Cognitively 29 .00 .13 .01 .03 

Distracted Socially 30 .00 .29 .09 .09 

Distracted Physically 30 .00 .18 .06 .05 

Distracted Cognitively 30 .04 .59 .29 .15 

Total Directed 30 .10 .75 .34 .15 

Total Divided 30 .09 .55 .22 .13 

Total Distracted 30 .07 .79 .44 .20 

Valid N (listwise) 29      

 

 Overall, participants spent more time in a distracted state than any other 

attention state. The mode distraction subcategory was cognitively distracted with a 

mean of 29% (s.d. 15%). Participants were much more likely to be using their cell 

phones, doing homework, checking their email, or reading a book than talking to each 

other, eating, or sleeping. Second to distracted attention was purely directed attention 

with a mean of 32% (s.d. 15%). Below directed attention, the subcategory of ‚divided 

physically‛ was most prevalent, with a mean of 17% (s.d. 13%). When multitasking, 

participants stretched, shifted in their seats, and snacked much more than talking or 

playing a cognitive game while still looking at the interface. Examining how 
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participants allocated their attention tells a great deal about how a long duration, low 

workload mission affects the human operator. 

Performance can be predicted from attention allocation.  The fourth research 

question asked whether performance can be predicted by attention states in a low 

workload environment. The hypothesis was correct in that participants with more 

directed attention performed better. The scatter plot in Figure 15 illustrates the positive 

trend between directed attention and performance in search and destroy tasks.  

 

Figure 15: Directed Attention versus Performance 

There is a marginally significant correlation between directed attention and 

performance (Spearman’s ρ = 0.372, p = 0.056). This finding is important because it 

shows that performance in long duration, low workload environments can be improved 

with higher levels of directed attention. In addition, directed attention is highly 
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correlated with total utilization (Pearson’s ρ = 0.434, p = 0.017), as shown in Figure 16. 

Thus, in a low taskload environment, more utilization, or workload, may be the key to 

more directed attention, and hence, better performance. 

 

Figure 16: Utilization versus Directed Attention 

4.3 Performance 

The fourth hypothesis, discussed in the previous section, supposed that 

performance could be predicted in the low workload environment. To further 

investigate this performance prediction, three linear regressions were calculated, one for 
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level. The model coefficients and significance levels are shown in Table 3 and will be 

discussed in the following sections for each primary performance metric. 

Table 3: Linear Regressions 

Performance 

Metric 

R2 β0 Total 

Utilization 

Directed 

Attention 

Gaming 

Level 

Target Finding 

Score 

.254 β = 0.906 

p < .001 

β = -4.282 

p = .007 

N/A N/A 

Target Tracking 

Percentage 

.189 β = 0.998  

p < .001 

β = -.637 

p = .048 

β = 0.131 

p = .049 

N/A 

Hostile Destruction 

Score 

.326 β = 1.177 

p = .032 

β = -9.055 

p = .015 

N/A β = 0.518 

p = .038 

 

The corresponding Kolmogorov Smirnov tests for normality and Levene tests for 

homoscedasticity are detailed in Appendix G. 

4.3.1 Search Performance Prediction 

The target finding score metric incorporates the speed and quantity of targets 

found, as detailed in Chapter 3. A lower target finding score indicates better 

performance. 

The linear regression model for target finding score suggested that total 

utilization is the only predictor variable that influences a person’s target finding ability. 

The model for target finding is represented mathematically in Equation 4, 

                                                             𝑦 = 0.906 − 4.282𝑢                                                        (4) 

where y represents target finding score and u depicts total utilization (p = 0.007). This 

model shows that a 1% increase in total utilization lowers the target finding score by 
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0.04, thereby improving target finding since a lower score is better. This result suggests 

that more interaction with the simulation in a low workload scenario improves search 

performance. 

Target finding score correlated with hostile destruction score (ρ = 0.593, p = 

0.001). Participants who found many targets and found them quickly also destroyed 

many hostiles quickly. These search and destroy metrics go hand-in-hand and are more 

dependent on the human operator than the automation. Targets must be identified by a 

human operator just as weapons approval must be made by a human operator. On the 

other hand, target tracking does not necessarily require human interaction with the 

system to be accomplished. The auto-planner schedules the UxVs to track targets 

automatically, while the human operator can monitor and approve these schedules. 

However, the act of tracking a target is not a discrete event in which the human 

operator participates. The next section on target tracking illustrates how more 

participant interaction hinders target tracking and simultaneously augments target 

finding and hostile destruction. 

4.3.2 Track Performance Prediction 

The target tracking percentage metric is calculated by dividing the total amount 

of time a participant’s UxVs track the emergent targets by the total amount of time the 

targets were available to be tracked. Before a target has been discovered, it cannot be 

tracked. The amount of time from target finding to the end of the simulation therefore 
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represents the total time a target was available to be tracked. Target tracking was done 

automatically by the UxVs. Once a target was designated by the operator as unknown 

or hostile, the auto-planner put the target into the queue to be tracked automatically. 

Target tracking is primarily left up to the automation after the operator identifies an 

emergent target and accepts a schedule that assigns that target in the SCT. Target 

tracking involves revisiting the moving target often enough that the target does not 

become ‚lost.‛ A lost target is one that is not found again at its last known location nor 

at its projected location based on the targets last known velocity vector and time since 

target sighting. The average number of targets participants lost was 0.93 (s.d. 1.2 

targets). 

The linear regression for target tracking percentage showed that a participant’s 

total utilization and percentage of directed attention both predict the system’s ability to 

track targets, as shown in Table 3. The model for target tracking is 

                                            𝑦 = 0.998 − 0.637𝑢 + 0.131𝑑                                            (5) 

where y represents target tracking percentage, u stands for total utilization, and d 

depicts the directed attention state. The first significant predictor of target tracking is 

total utilization with p = 0.048. A 1% increase in total utilization results in a 0.637 

percent decrease in target tracking. The more a participant interacted with the 

simulation, the worse the target tracking became since the automation is not left alone 
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to operate optimally in target tracking. This interruption caused a lag in automated 

target tracking assignments to the UxVs, decreasing the target tracking percentage.  

The second predictor of target tracking is percent directed attention with p = 

0.049. A 1% increase in percent directed attention causes a 0.131 increase in percent 

target tracking. Even though tracking is considered primarily automation-driven, 

having an operator intently monitor the system to make sure targets are not becoming 

lost ameliorates target tracking. 

The extra target edits variable was not included in the linear regression because 

it correlates with the predictor variable total utilization (ρ = 0.392, p = 0.035). The 

correlations of extra target edits show that participants who over-interacted with the 

system by editing targets beyond the system requirements had worse target tracking.  

Target tracking works best when the automation is left alone, yet monitored by a 

human supervisor. Although target tracking is automated, directed attention 

nonetheless assists the system in not losing targets because a human operator can 

intervene with search tasks according to the situation. However, directed attention 

improves target tracking percentage less than 1/5 as much as a lack of utilization does. 

However, the overall mission would be impossible without the necessary operator 

interactions for destroying hostile targets, as discussed in the next section. A balance 

must be struck for overall mission performance; although operator interaction via 

utilization hinders target tracking, it advances both the search and destroy tasks. 
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4.3.3 Destroy Performance Prediction 

The hostile target destruction metric is calculated similarly to the target finding 

score. Hostile destruction score incorporates the speed and quantity of hostiles 

destroyed. A lower hostile destruction score indicates better performance. 

The linear regression for hostile target destruction is predicted by total utilization 

and gaming level. The model is: 

                                                     𝑦 = 1.177 − 9.055𝑢 + 0.518𝑔                                               (6) 

where y is the hostile destruction score, u represents total utilization, and g signifies 

gaming level. The first significant predictor variable for hostile destruction is total 

utilization (p = 0.015), just as for target finding score. A 1% increase in total utilization 

results in a 0.09055 decrease in hostile destruction score, which is an improvement. The 

more interaction participants have with the simulation, the faster all the hostiles can be 

destroyed. Thus, keeping the human interacting with the system is key to good 

performance in hostile destruction.  

The second predictor variable for hostile destruction score is gaming level (p = 

0.038). An increase in experience level from non-gamer to gamer results in a 0.518 

increase in hostile destruction score, which is a large decrement in hostile destruction 

performance. This finding suggests that gamers are not well-suited for long duration, 

low workload missions in supervisory control because of their conditioned need for 

stimulus. The task of approving weapons launches mimics the exciting missions of 
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video games; however, when combined with a low workload environment, the task of 

approving weapons launch does not bring out the best performance in gamers.  

Extra replanning events also correlated with improved hostile destruction (ρ = -

0.432, p = 0.025). Extra replans involve more interaction with the system, or total 

utilization, and increase hostile destruction performance. Extra replanning was not 

included in the linear regression because it correlates with total utilization (ρ = 0.577, p = 

0.001). In addition, hostile destruction score correlated strongly with target finding 

score (ρ = 0.593, p = 0.001). Participants who found many targets quickly also had a 

tendency to destroy many hostiles quickly.  

In terms of information processing and situational awareness, hostile destruction 

performance negatively influenced attending to automation-prompted search tasks. 

Hostile destruction score correlated negatively with increased prompted search task 

average reaction time (ρ = -0.396, p = 0.046). In addition, hostile destruction performance 

correlated with poorer prompted search task accuracy (ρ = 0.408, p = 0.035). Participants 

were so focused on destroying a hostile target that they neglected their duties of quickly 

and accurately creating search tasks when prompted.  

4.4 Attentional Effects on Operator Behavior  

Correlations among performance metrics other than search, track, and destroy 

tasks present some interesting research findings. First, attention state affects utilization, 

and therefore performance. Total directed attention correlated with extra search tasks (ρ 
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= 0.509, p = 0.004) and extra replans (ρ = 0.580, p = 0.001) just as total divided attention 

correlated with extra search tasks (ρ = 0.453, p = 0.012) and extra replans (ρ = 0.374, p = 

0.042). Oppositely, total distraction correlated negatively with extra search tasks (ρ = -

0.684, p < 0.001) and extra replans (ρ = -0.689, p < 0.001), since a participant cannot 

interact with the interface when they are not looking at it.  These correlations make it 

clear that attention state does, in fact, affect behaviors that add to utilization. 

The directed and distracted attention states correlated with utilization that 

influenced performance. Total utilization correlated with total directed attention (ρ = 

0.434, p = 0.017). Self-imposed utilization correlated negatively with total distraction (ρ = 

-0.406, p = 0.026). The more utilization a participant self-imposed, the less likely they 

were to be completely distracted. One way for participants to have less distracted 

attention and possibly more directed attention was to engage in self-imposed 

utilization. More directed attention led to higher utilization and better performance, 

whereas self-imposed utilization prevented distraction. 

This long duration, low workload study showed that performance in creating 

search tasks and chat messaging suffered, even with increasing utilization. As discussed 

previously, increasing total utilization improved performance in the primary mission 

tasks of search and destroy. Interestingly, chat response accuracy negatively correlated 

with total utilization (ρ = -0.498, p = 0.005). The more a participant interacted with the 

system, the less accurate their responses were to the command center situational 
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awareness questions. It is surprising that a low workload study with such a low average 

total utilization (11.4%, s.d. = 0.03) could show a decrease in situational awareness as 

utilization increases. In addition, even at a low workload setting, participants’ reaction 

times slowed with increasing levels of required utilization. Required utilization 

correlated with prompted search average reaction time (ρ = 0.439, p = 0.015) and chat 

average reaction time (ρ = 0.502, p = 0.006), which suggests that the more the required 

utilization increased, the worse the reaction times became. Conversely, in the 

previously discussed moderate workload study, increasing utilization did not 

significantly correlate with worsened reaction times. The poor performance in reaction 

times only occurred in the low workload study. Malleable attentional resource theory 

explains that performance often suffers in situations of mental underload [66], and the 

lengthened reaction times and worsened chat response accuracies of this low workload 

experiment illustrate this point. Ordinarily, a decrease in task performance constitutes a 

limit in mental capacity. However, the low taskload imparted on participants and the 

low levels of utilization measured show that they were clearly not overloaded, but 

perhaps the boredom did cause their mental capacity to be filled. 

Other correlations demonstrated that participant behaviors in different tasks 

could cause a snowball effect of good performance. Prompted search task average 

reaction time and accuracy, while different metrics of different categories (e.g. 

information processing and situational awareness), were strongly correlated (ρ = -0.801, 
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p < 0.001); this is a positive correlation because a lower reaction time is better. 

Participants created prompted search tasks with equal measures of speed and accuracy. 

If participants attended to the task quickly, they were also likely to be accurate. 

Likewise, participants who made copious amounts of extra search tasks were also likely 

to engage in many extra replans, as shown in the correlation between extra replans and 

extra search tasks created (ρ = 0.914, p < 0.001). Extra search tasks and replans all 

increased total utilization, which was shown to improve performance.  

4.5 Vigilance Degradation 

The final research question considered whether vigilance degrades over time in a 

long duration, low workload mission involving human supervisory control of 

networked UxVs. It was hypothesized that directed attention would degrade over time. 

This hypothesis was supported. A Repeated Measures General Linear Model showed a 

significant difference in directed attention across hour intervals (F = 21.953, p < 0.001). 

Tukey pairwise comparisons showed a statistical difference at the α < 0.05 level in 

directed attention between all hour intervals, except the comparison between the third 

and fourth hour. The second hour was also only marginally different from the fourth 

hour (p = 0.066). The p values for all comparisons can be referenced in Appendix H. 

Figure 17 shows the estimated means plot of how vigilance decreases overtime. The 

error bars show standard error. Note that hours 3 and 4 are not statistically different, 
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even though the amount of directed attention appears higher in hour 4. Directed 

attention starts out high and decreases, eventually flatlining from hours 3 to 4. 

 

Figure 17: Estimated Means Plot for Vigilance Degradation 

4.6 Research Question Summary 

This research showed that performance does not necessarily decrease with low 

workload, especially in the context of human supervisory control of networked UxVs. 

Given varying levels of low taskload, operators tended to gravitate toward a common 

total utilization that was well above the required utilization. The boredom caused by 

the low workload environment caused operators to spend the majority of their time in 

distracted attention, followed by directed attention, and the least amount of time 
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multitasking in divided attention. More directed attention predicts higher operator 

performance, especially in the tracking portion of the mission.  

Higher utilization predicts improved operator performance in search and 

destroy tasks, but hinders the automation’s ability to track targets. Gaming experience 

was a detriment to destroying hostile targets in this long duration, low workload 

mission. Vigilance, shown by a decrement in amount of directed attention per hour, 

decreased over the course of the mission duration. The descriptive statistics for all data 

gathered can be found in Appendix I. Sources of error are listed in Appendix J. The next 

section describes the coping mechanisms of the top performers. 

4.7 Top Performer Analysis 

This section describes the top 8 performers and gives insight into how 

participants coped with the low workload in order to outperform the majority of 

participants. The top 8 performers were identified as having a standard deviation of at 

least 1 below the mean performance score, where a lower performance score is better. 

Figure 18 shows the mean as a solid line and one standard deviation below the mean as 

a dashed line. 

Performance score is based on the target finding score and hostile destruction 

score, which were detailed in Chapter 3. Although the mission involves all three 

categories of search, track, and destroy, only search and destroy truly measure human 

performance, whereas the track metric is a better measure of automation 
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Figure 18: Top Performer Selection 

performance. Thus, the target finding and hostile destruction score were represented in 

the total performance score. Since target finding score is on a scale from 0 to 4 and the 

hostile destruction score is on a scale from 0 to 2, the hostile destruction score was 

doubled to be on an equivalent scale as the target finding score. These two scores were 

summed to obtain the performance score where lower is better. The top 8 performers’ 

scores ranged from a high score of 0.23 and a low score of 0.59. 

These participants were analyzed to further understand how humans can 

succeed in a long duration, low workload mission. Six of the 8 top performers were 

non-gamers, whereas only 2/8 were gamers. It is interesting that the 2 gamers of the top 

performers were both female. Six of the 8 top performers had military experience, and 
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only 2/8 were not in the military. It is interesting that so many top performers were in 

the military since only 43% of participants overall had military experience.  

The top performers included 4 males and 4 females. Thirty-six percent of all 

females who participated in this long duration, low workload experiment were top 

performers. Only 21% of males who participated in this experiment were identified as 

top performers. Future research should be conducted to validate whether women are 

better at sustained alertness tasks. 

The winner of the experiment was a 19-year-old female college student with no 

military experience who does not play video games. It can be immediately deduced that 

this description of the top supervisory controller of networked UxVs does not match 

current stereotypes of the military’s UxV pilots for search, track, and destroy missions.  

The winner, the youngest participant, had a total utilization of 15.2%, although she was 

only required to be 1.6% utilized. In the post-experiment survey, she reported feeling 

busy, self-rating a 3 out of 5 busyness level. Of all the top performers, the winner felt 

the busiest. It is interesting that the winner had a neutral perception toward UxVs and 

also indicated a low comfort level with using computer programs. Her 

conscientiousness helped her. She had a middle-of-the-road self-rated confidence score 

of 3 out of 5, although most of the top performers felt very confident with a median self-

rated confidence of 4 out of 5. The winner’s self-rated performance was ‚good,‛ or 4 out 

of 5, like most of the top performers. One of the top performers did indicate a self-rating 
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of excellent performance (5 out of 5). Appendix K shows the demographic and post-

experiment survey data for the top performers. Figure 19 shows a bar graph of top 

performers’ self-rated confidence and self-rated performance with the performers listed 

in order of performance. 

 

Figure 19: Confidence and Performance Self-Ratings 

The characteristic of the winner that set her apart was her extremely high 

amount of directed attention; she appeared focused 75% of the time, whereas the 

average amount of directed attention for all the top performers was 41% (s.d. = 20%), 

and the overall average of directed attention was only 34% (s.d. = 15%). Thus, the top 

performers’ average directed attention was higher than the overall average 34% (s.d. = 

15%). However, 3 of the top performers had below average directed attention, at 31%, 

21%, and 17%, yet still managed to be ranked as top performers. The attention state 
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descriptive statistics are shown in Table 4, listed in decimal form. The attention state 

values represent the percentage of time the participants spent in each state. 

 

Table 4: Attention State Descriptive Statistics for Top Performers 

 N Minimum Maximum Mean Std. Deviation 

Divided Socially 8 .00 .07 .02 .02 

Divided Physically 8 .03 .25 .14 .08 

Divided Cognitively 8 .00 .06 .01 .02 

Distracted Socially 8 .01 .19 .05 .06 

Distracted Physically 8 .03 .18 .07 .05 

Distracted Cognitively 8 .04 .59 .29 .21 

Total Directed 8 .17 .75 .42 .19 

Total Divided 8 .09 .26 .17 .07 

Total Distracted 8 .12 .70 .41 .20 

Valid N (listwise) 8         

 

The top performers operated in different types of social environments. For 

instance, the winner of the experiment was in a test room that was completely silent 

because her group members were seemingly introverted like herself. She hardly spoke a 

word and remained almost entirely focused on the mission simulation. One of her 

group members fell asleep for nearly half an hour, and neither of her group members 

were top performers.  

A different example shows two of the top performers were in the same test 

session together, a session in which an intense political debate was going on for a large 

portion of the mission duration, approximately 120 minutes. One participant became a 

top performer by ignoring the two group members engaged in the political debate and 

quietly focusing on the mission (with 41% of her time in directed attention) or by 
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keeping herself alert by reading a book (with 36% of her time in divided attention). The 

other top performer from that same test session engaged in the political debate the 

whole time and spent nearly 40% of the time distracted from the mission by talking 

with the third group member with his back to the computer interface. However, this 

participant performed extremely well in spite of the high distraction level, and in fact, 

he was the second place performer of the study. He was able to accomplish excellent 

performance despite his high distraction in the political debate since he still spent 45% 

of the time in directed attention, attending to his simulation at frequent intervals during 

the debate. On average, he attended to his mission 42 times per hour during the 

political debate, or approximately 84 times during the two-hour debate. The effects of 

these switching times, going back and forth between the low workload mission and 

intense debate, was an effective strategy for him in dealing with boredom.  

The third group member, who was the instigator of the social debate, was not a 

top performer because she did not attend to her mission much at all while talking. 

Whenever the other debater would switch from their discussion to attend to his 

interface, she would also look away as is the social pattern when someone a person is 

conversing with directs his attention elsewhere. However, instead of attending to her 

own mission, the third group member looked at a project on her personal laptop. In 

essence, the third group member had two sources of distraction, whereas her debate 

partner only switched between the debate and his mission.   
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All in all, about half of the top performers were in social environments where the 

participants conversed throughout the mission, and the other half operated in rooms 

that had a quiet atmosphere of silent tension. It did not matter which type of 

environment a participant ended up fostering or being subjected to; a participant could 

be a top performer whether by talking or being quiet, depending on how they attended 

to their mission. Either the talking or the silence could have been a coping mechanism. 

Participants may have been using two different types of attentional mechanisms 

to cope with their boredom environment: endogenous and exogenous attention. 

Endogenous attention involves actively self-sustaining attention on a task one considers 

important. This typically top-down controlled mechanism requires attentional [49] 

effort. On the other hand, exogenous attention is an automatic attraction of attention 

that comes from an outside stimulus or change in stimulus. Exogenous attention [49] 

functions in a bottom-up manner and is not under a person’s voluntary control. Both of 

these attentional orientations [49] were manifested in this study and helped participants 

perform the mission. People’s different personality types and attentional dispositions 

may have influenced the way in which they allocated their attention to complete the 

experiment mission. Personality characteristics could be a facet of future work for 

understanding how human supervisory controllers cope with low workload. Table 5 

provides information concerning the top 8 performer’s characteristics, where the 
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category ‚Social‛ indicates whether the test group was one that had social interaction as 

opposed to silence.  

Table 5: Top Performer Characteristics 

Rank Score Directed Divided Distracted Utilization Female Military Social Gamer 

1 0.23 75% 13% 12% 15%      

2 0.28 45% 18% 37% 15%       

3 0.31 51% 26% 23% 16%       

4 0.41 31% 26% 43% 7%      

5 0.46 56% 9% 35% 13%       

6 0.51 21% 9% 70% 12%        

7 0.51 17% 15% 69% 9%        

8 0.59 41% 23% 36% 17%       

 

The defining factor for top performers was either showing exemplary discipline 

to focus on the mission or else employing strategic switching times between distractions 

and the mission. Three top performers had below average directed attention and still 

came out on top because of effective switching times, like the second place winner. It is 

interesting that this second place winner scored so closely to the first place winner, only 

differing by 0.05 out of an 8.0 performance scale with 0.0 being the best. The second 

place winner was the opposite type of person as the first place winner in that he was 

one of the oldest participants at age 28, male, with military experience, although not a 

gamer. Instead of using extreme focus to complete the mission, he used switching times 

between distractions and the mission. It is also interesting that the third place winner 

scored even closer to the second place winner, only differing by 0.03 out of an 8.0 
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performance scale. The third place winner was similar to the first place winner in terms 

of a highly focused strategy. The third place winner also reported feeling busy during 

the low workload mission. The first and third place participants were both females and 

the only two to report feeling ‚busy,‛ while all other participants reported ‚not busy‛ 

or ‚idle.‛ These first and third place winners outperformed the rest of the participants 

even with a higher perceived workload.  

Overall, this analysis suggests that participants were able to be top performers 

even though they were distracted on average 43% of the time. In other words, 

distraction is not necessarily detrimental to mission performance. This research 

suggests that participants with very high levels of focused attention showed exemplary 

performance; in addition, participants with moderately high distraction also performed 

well because of employing effective switching times. 

4.8 Performance Comparison with a Moderate Workload Study 

In order to determine how well participants in the long duration, low workload 

experiment performed relative to other multi-UxV studies, a comparison was made 

between this experiment and the previous replan interval experiment discussed in 

Chapter 2. The previous experiment researched moderate levels of workload, ranging 

from 30% to 70% utilization, whereas the utilizations in this experiment ranged from 5% 

to 18%. The 31 data points for the moderate workload experiment were taken from the 

45-second replan interval dataset, given this was the best performance condition, and 
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all 30 data points were used from the low workload study. The performance 

comparison was made in terms of target finding score and hostile destruction score, the 

two primary human performance metrics detailed in Chapter 3. These metrics take into 

account speed and quantity of targets found and hostiles destroyed. In order to 

compare the two studies, the scores in both of these categories were normalized to the 

same scale with scores ranging between 0 and 1, where 1 is the best possible score. The 

target finding score comparison shows that under low workload participants are able to 

achieve the highest target finding scores as well as the lowest target finding scores. 

Figure 20 shows these results. The data for target finding appear similar for both 

studies. 

 

Figure 20: Low Workload versus Moderate Workload in Target Finding 
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The hostile destruction score comparison shows the same trend; low workload 

brings both the highest and lowest performance scores, but with more variance in the 

data. Figure 21 shows the comparison for hostile destruction.  

 

 

Figure 21: Low Workload versus Moderate Workload in Hostile Destruction 
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Table 6: Attention Allocation of Hostile Destruction Groups 

Hostile Destruction Directed Divided Distracted 

High Performance 38% 21% 41% 

Medium Performance 34% 21% 45% 

Low Performance 24% 20% 56% 

 

The maximum number of hostiles that could have been destroyed in the low 

workload experiment was 2, while a total of 5 hostiles could have been destroyed in the 

moderate workload experiment. As shown in the low workload data, 5 participants 

destroyed 0 hostiles during the 4-hour mission. However, in the moderate workload 

data, the worst 4 performers destroyed one hostile. On the other hand, no participants 

in the moderate workload experiment were able to destroy all 5 available hostiles, but 

over one third of participants in the low workload study were able to achieve the 

mission objective of destroying all hostiles.  

As seen in both the search and destroy data sets, participants can achieve the 

highest performance as well as the lowest performance under long duration, low 

workload conditions of the multiple UxV supervisory control scenario. The moderate 

workload environment appears more predictable, but compared to the low workload 

environment, neither the best nor the worst possible performance is achieved.  

This comparison between workload levels and performance brings this research 

discussion full circle, back to the first research question of whether the Yerkes-Dodson 

curve holds true for low workload. It can be seen that, while the worst possible 
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performance can occur during low workload, that is not as likely. Therefore, according 

to this research, the parabolic drop in performance at low workload suggested by the 

Yerkes-Dodson curve was not confirmed as the model for how operators perform in a 

low workload, supervisory control environment. Perhaps the automation made up for 

times when the participants could not focus on the mission, and the distractedness of 

the participants actually helped sustain alertness. The majority of the data showed that 

mediocre and even exemplary performance can be achieved at low workload. However, 

this is not to say the participants enjoyed the low workload environment. Their survey 

comments and pained looks in the video data demonstrated the extreme boredom and 

tedious nature associated with the low workload environment. Despite the hardships of 

the long duration, low workload experiment, one third of participants still exceeded the 

performance of the moderate workload experiment in destroying hostiles. This research 

finding suggests that excellent performance can be achieved amid tedious conditions of 

long duration, low workload missions.     
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5 Conclusion 

This research revealed that a low workload environment for supervisory control 

of decentralized heterogeneous unmanned vehicles impacts operators’ vigilance and 

attention state. This experiment provided a unique environment for participants to 

perform a complex supervisory control task while allowing them to react to the 

boredom environment in their own way. This research was able to simultaneously 

gather objective performance data in a realistic search, track, and destroy UxV mission 

and capture the natural boredom behaviors induced by the grueling simulation. 

Humans have to employ coping mechanisms to surmount the boredom of prolonged 

low workload. Low workload has a way of bringing out the best performance in people, 

while bringing out the worst in others.  

This research determined that the Yerkes-Dodson curve, which predicts that 

performance plummets at low workload, does not hold true for low workload in 

supervisory control of networked UxVs. People subjected to low workload can perform 

equally well if not better than operators working at moderate workload. 

This researched also uncovered results that were not foreseen. Incrementing 

lower levels of taskload does not necessarily decrease operator utilization, or percent 

busy time. This experiment discovered that participants self-imposed interactions with 

the human-computer system when subjected to a low taskload scenario. Under these 

conditions, operators displayed directed attention toward their assigned work only a 
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third of the time. Moreover, the operators hardly multitasked, perhaps because dividing 

their attention requires the extra effort of doing more than one thing at once. This low 

workload environment caused vigilance to degrade over time, as shown by the 

decreasing directed attention, especially during the second half of the mission.   

This research brought to light key characteristics that can predict performance in 

a prolonged supervisory control mission under low workload. Video gamers are 

predicted to be poor performers in a low workload supervisory control environment 

because they are conditioned to the need for constant stimuli. In a long duration, low 

workload mission, increasing utilization predicts better performance in the search and 

destroy tasks of supervisory control of networked UxVs. High directed attention can 

predict good mission performance, even in the track task, which is mainly automated.  

Lastly, this research provides evidence contrary to the common belief that 

distraction is harmful to mission performance. It was shown that the majority of the top 

performers had a high percentage of distraction time. Distraction can be a method for 

keeping the mind and body engaged and alert. When used in conjunction with effective 

switching times, distraction can help operators attain top performance. 

5.1 Possible Solutions 

The concept of automated adaptation can be considered a solution to the 

detriments of low workload. It has been shown that implementing certain automation 

adaptation with certain levels of operator workload enhances performance [67]. 
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Adaptive aiding can be implemented in times of high operator workload to help the 

operator cope with high workload. On the other hand, adaptive task allocation can also 

be implemented at low levels of operator workload for the purpose of bringing the 

operator up to a comfortable workload in order to improve performance [67]. Adaptive 

automation may help mitigate the harmful effects of low workload discovered in this 

study, but more research is needed to determine how to use effective adaptive 

techniques. 

5.2 Additional Future Work 

A high workload experiment could be conducted to add to the low workload 

and moderate workload studies previously discussed. In that way, a full range of 

performance data spanning low, moderate, and high workload could be plotted to 

make a complete assessment of the Yerkes-Dodson relationship of performance to 

workload. 

Future work can also be conducted to model human interaction with multiple 

UxVs in low workload conditions. The goal would be to have a model that accounts for 

boredom and spikes in workload in order to predict operator performance. Switching 

time research needs to be conducted in order to implement the performance aid of 

switching times into the human performance model. This future research will assist in 

the design of smart decision support tools that can increase vigilance and performance 

of operators in supervisory control domains with low workload. The research of this 
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thesis paves the way for future research on modeling boredom in supervisory control of 

networked UxVs. 
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Appendix A: Interface Details 

This Appendix describes the OPS-USERS interface. 

A.1     UxV Symbols 

The UxV symbols displayed in the map view are depicted in the following table. 

Table 7: UxV Symbols 

 Vehicle 

Type 

Range and 

Fuel 

Radar 

Footprint 

Primary 

Mission 

Image 

USV 1 

Unmanned 

Surface 

Vehicle 

Ship that 

runs along 

the river 

Medium Large Search and 

Track 

 
UAV 2 

Unmanned 

Aerial 

Vehicle 

Fixed-wing 

airplane 

Small Rectangular 

due to 

mounted 

camera 

Search and 

Track 

 
UAV 3 

Unmanned 

Aerial 

Vehicle 

Helicopter Small Rectangular 

due to 

mounted 

camera 

Search and 

Track 

 
WUAV 

Weaponized 

Unmanned 

Aerial 

Vehicle 

Helicopter  Large Large Detect and 

Destroy 

Hostiles 

 
 

      A.2     Refueling Base 

The UxVs refuel themselves automatically at the base location symbol. 
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Figure 22: Refueling Base 

      A.3     Search Task Symbols  

Search tasks can be added to the mission. A ‚search‛ task designates a location 

for a UxV to go to in search of a target. 

 Color shows priority level. 

 The letter to the right of the search task identifies it (this is its name). 

 The number to the left of the search task symbol indicates which UxV is assigned 

to perform the search task (note than search task F is unassigned). 

 

Figure 23: Search Task Symbols 

For example, the search task on the left is called search task D. UAV 3 is assigned 

to travel to the location on the map where this search task symbol resides. UAV 3 will 

search the area at the search task location and during the transit to the location. 
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A.4     Target Symbols 

The UxVs must periodically track or revisit the targets that have been found. The 

Weaponized UAV must destroy hostile targets. The shape and color of the target 

symbols is a dual coding of their representation to benefit colorblind operators. 

 Red diamonds are hostile targets. 

 Yellow clovers are unknown targets. 

 Blue rectangles are friendlies and are not tracked. 

 The letter on the right identifies the target. 

 The character on the left indicates which UxV is assigned to the target (for 

example, the Weaponized UAV is assigned to destroy hostile target D shown in 

Figure 24). 

 

Figure 24: Target Symbols 

According to the center symbol, UAV 2 will track Unknown Target B. UAV 2 will 

travel to the location where this target symbol is positioned on the map and begin 

following the target. If UAV 2 has another task to perform or must go back to base to 

refuel, the computer algorithm will calculate an estimated new position for the target 

based on the target’s last known position and velocity. 
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Flags attached to the target symbols designate priority level. The color and 

location of the flag is a dual coding of its representation to benefit colorblind operators. 

 Red vertical flag on top of the target symbol specifies high priority. 

 Orange horizontal flag beside the target symbol specifies medium priority. 

 Yellow downward flag below the target symbol specifies low priority. 

 Friendlies do not have a priority level flag because they do not need to be 

tracked. 

 Figure 25 shows some example priority level-designated targets. 

 

Figure 25: Target Priority Flags 
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A.5     Loiter Symbols 

The Weaponized UAV does not search or track targets. The WUAV can only 

detect targets and destroy hostile targets. The WUAV can be sent to loiter, or hover over 

a particular position, while waiting to destroy hostile targets. The loiter symbol for the 

WUAV resembles a stop sign. The color indicates priority level. 

 

Figure 26: Loiter Symbols 

A.6     Target Identification Sequence 

Initially the target symbol may not be visible within the target identification 

window. The participant must click and drag over the area within the window to pan 

for the target symbol. Subsequently, the participant can click the appropriate target 

designation button to identify the target symbol as hostile, unknown, or friendly. If an 

unknown target is found, the target must first be marked as unknown. However, the 

designation can be edited later as more information arises from the chat box. Once the 

target has been identified, the system allows the participant to choose a priority level 

for the emergent target. The command center provides information on the priority 

levels of emergent targets based on the location of target discovery. This priority level 

information is disseminated via the chat message box.  Figure 27 depicts this sequence 
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of target finding, panning to observe the target symbol, identifying the target, and 

designating a priority level.  

 

Figure 27: Target Identification Sequence 

       A.7     Destroyed Hostiles 

Destroyed targets appear as black symbols on the Map View. These destroyed 

target symbols remain on the map for the duration of the simulation to indicate the 

destruction sites. 

         

Figure 28: Destroyed Hostile Target Symbol 
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Appendix B: Consent to Participate Form 

CONSENT TO PARTICIPATE IN 

NON-BIOMEDICAL RESEARCH 

 

Long Duration, Low Workload Missions for Heterogenous Unmanned Vehicle Teams 

 

You are asked to participate in a research study conducted by Professor Mary 

Cummings PhD, from the Aeronautics and Astronautics Department at the 

Massachusetts Institute of Technology (M.I.T.).  You were selected as a possible 

participant in this study because the expected population this research will influence is 

expected to contain men and women between the ages of 18 and 50 with an interest in 

using computers. You should read the information below, and ask questions about 

anything you do not understand, before deciding whether or not to participate. 

 

 PARTICIPATION AND WITHDRAWAL 

 

Your participation in this study is completely voluntary and you are free to 

choose whether to be in it or not. If you choose to be in this study, you may 

subsequently withdraw from it at any time without penalty or consequences of any 

kind.  The investigator may withdraw you from this research if circumstances arise 

which warrant doing so.   

 

 PURPOSE OF THE STUDY 

 

The purpose of this research is to see what the effect is of a long duration, low 

workload scenario in the context of piloting multiple, highly autonomous, unmanned 

vehicles in the setting of a populated control room. 

 

 PROCEDURES 

 

If you volunteer to participate in this study, we would ask you to do the 

following things: 

 

 Participate in training on the video game-like interface via the refresher tutorial,   

as you are already familiar with the interface from the previous OPS-USERS 

experiment.  Complete a fifteen-minute practice session where control a team of 

simulated unmanned vehicles.  The vehicles you will control will be assigned 

with the task of finding, identifying, and tracking targets in an area of interest, 
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destroying hostile targets, and collaborating with the auto-planner to replan 

schedules. 

 Participate in a four-hour long testing session where you will experience a long 

duration, low workload mission.  You will work alongside two other participants 

to simulate a populated control room, and you will each have your own 

workstations with your own vehicles and territory to control 

 You will be rewarded a score for the trial based on the number of targets you 

successfully find, how long they are successfully tracked thereafter, the 

percentage of the total area of interest is searched, and number of hostile targets 

destroyed. 

 All testing will take place at MIT in room 35-220. 

 Total time: 4 hours and 45 minutes 

 

 POTENTIAL RISKS AND DISCOMFORTS 

 

There are no anticipated physical or psychological risks in this study. 

 

 POTENTIAL BENEFITS  

 

While you will not directly benefit from this study, the results from this study 

will assist in the design of interfaces for human-UV systems. 

 

 PAYMENT FOR PARTICIPATION 

 

You will be paid $125 to participate in this study which will be paid upon 

completion of your debrief.  Should you elect to withdraw in the middle of the study, 

you will be compensated for the hours you spent in the study.  An additional $250 Best 

Buy Gift Card will be awarded to the participant with the high score. 

 

 CONFIDENTIALITY 

 

Any information that is obtained in connection with this study and that can be 

identified with you will remain confidential and will be disclosed only with your 

permission or as required by law.  You will be assigned a subject number which will be 

used on all related documents to include databases, summaries of results, etc. 

 

 IDENTIFICATION OF INVESTIGATORS 

 

If you have any questions or concerns about the research, please feel free to 

contact the Principal Investigator, Mary L. Cummings, at (617) 252-1512, e-mail, 
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missyc@mit.edu, and her address is 77 Massachusetts Avenue, Room 33-311, 

Cambridge, MA, 02139.  The investigators are Christin Hart and Vicki Crosson.  They 

may be contacted at (617) 253-0993 or via email at chart@mit.edu and viccro@mit.edu.   

 

 EMERGENCY CARE AND COMPENSATION FOR INJURY 

 

If you feel you have suffered an injury, which may include emotional trauma, as 

a result of participating in this study, please contact the person in charge of the study as 

soon as possible. 

 

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for 

the provision of, emergency transport or medical treatment, including emergency 

treatment and follow-up care, as needed, or reimbursement for such medical services.  

M.I.T. does not provide any other form of compensation for injury. In any case, neither 

the offer to provide medical assistance, nor the actual provision of medical services 

shall be considered an admission of fault or acceptance of liability. Questions regarding 

this policy may be directed to MIT’s Insurance Office, (617) 253-2823. Your insurance 

carrier may be billed for the cost of emergency transport or medical treatment, if such 

services are determined not to be directly related to your participation in this study. 

 

 RIGHTS OF RESEARCH SUBJECTS 

 

You are not waiving any legal claims, rights or remedies because of your 

participation in this research study.  If you feel you have been treated unfairly, or you 

have questions regarding your rights as a research subject, you may contact the 

Chairman of the Committee on the Use of Humans as Experimental Subjects, M.I.T., 

Room E25-143B, 77 Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787. 

 

SIGNATURE OF RESEARCH SUBJECT OR LEGAL 

REPRESENTATIVE 

 

I understand the procedures described above.  My questions have been 

answered to my satisfaction, and I agree to participate in this study.  I have been given a 

copy of this form. 

 

________________________________________ 

Name of Subject 

 

________________________________________ 

mailto:missyc@mit.edu
mailto:chart@mit.edu
mailto:viccro@mit.edu
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Name of Legal Representative (if applicable) 

 

________________________________________  ______________ 

Signature of Subject or Legal Representative   Date 

 

SIGNATURE OF INVESTIGATOR  

 

In my judgment the subject is voluntarily and knowingly giving informed 

consent and possesses the legal capacity to give informed consent to participate in this 

research study. 

 

________________________________________  ______________ 

Signature of Investigator     Date 

 

  



111 

 

Appendix C: Demographic Survey 

1. Subject number:_____ 

 

2. Age:_____ 

 

3. Gender:      M     F 

 

4. Occupation:______________________________ 

 

if student, (circle one):        Undergrad               Masters PhD 

 

expected year of graduation:_________ 

 

5. Military experience (circle one):  No Yes        If yes, which branch:________ 

 

        Years of service:________ 

 

6. Give an overall rating of your past two nights of sleep. 

 

Poor  Fair  Good   Great 

 

7. Rate your health in terms of nutrition and exercise in the past week. 

 

Poor  Moderate                  Good 

 

8. How often do you play computer games?   

 

Rarely            Monthly            Weekly          A few times a week         Daily  

Types of games played:______________________________________ 

9. Rate your comfort level with using computer programs. 

 

Not comfortable     Somewhat comfortable Comfortable Very Comfortable 

 

10. What is your perception toward unmanned vehicles? 

 

Intense dislike            Dislike            Neutral            Like            Really Like 
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Appendix D: Demographic Results 

In a demographic survey, participants were asked to rate their gaming 

experience, computer comfort level, and perception toward unmanned vehicles. The 

demographic survey can be found in Appendix C. Participants indicated their 

frequency of playing video games on a five-point Likert scale from ‚rarely plays 

games‛ to ‚daily gamer.‛ Participants can essentially be grouped into two video 

gaming categories: gamers and non-gamers, where gamers played at least weekly and 

non-gamers only played games monthly or rarely. Thus, one third of participants were 

gamers and two thirds were non-gamers. Table 8: Gaming Demographics shows the 

category of gamer versus non-gamer associated with each level of gaming frequency in 

addition to the number of participants who indicated that Likert scale level. 

Table 8: Gaming Demographics 

Gaming Frequency Rarely Monthly Weekly Multi-weekly Daily 

Gaming Level Non-gamer Non-gamer Gamer Gamer Gamer 

Number of Participants 11 9 7 3 0 

 

The computer comfort level 4-point Likert scale rating ranges from not 

comfortable to very comfortable. The vast majority of participants indicated a high 

comfort level with using computer programs, as shown in Table 9. 

Table 9: Computer Comfort Level Demographics 

Computer Comfort Level Not Comfortable Somewhat 
Comfortable 

Comfortable Very 
Comfortable 

Number of Participants 1 4 12 13 
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The five-point Likert scale for perception toward unmanned vehicles ranges 

from ‚intense dislike‛ to ‚really like‛ with a neutral category in the middle. Overall 

participants either liked unmanned vehicles or felt neutral; these demographics on UxV 

perception show a shift since the previous experiment with a very similar pool of 

subjects (some of whom changed their mind about UxVs). These results are shown in 

Table 10. 

Table 10: Perception Toward UxVs Demographics 

Perception toward UxVs Intense Dislike Dislike Neutral Like Really Like 

Moderate Workload Study 0 1 37 43 17 

Low Workload Study 3 0 20 8 0 
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Appendix E: Pre-experiment Skill Survey 

1. How confident were you about the actions you took? 

 

Not Confident   Somewhat Confident   Confident   Very Confident   Extremely Confident  

2. How did you feel you performed? 

 

 Very Poor           Poor          Satisfactory         Good          Excellent 

3. How busy did you feel during the practice mission? 

 

 Extremely Busy               Busy                 Not Busy               Idle 

 

4. Do you understand how to create search tasks? 

 

               No  Somewhat Yes 

 

5. Do you understand how to use the target identification window? 

 

               No  Somewhat Yes 

 

6. Do you understand how to approve a weapon launch on hostile targets? 

 

               No  Somewhat Yes 

 

7. Do you understand how to use the Schedule Comparison Tool (SCT)? 

 

               No  Somewhat Yes 

 

8. Do you understand that you must accept a plan in order for the unmanned 

vehicles to perform new search, track and destroy tasks? 

 

               No  Somewhat Yes 

 

9. Do you understand that, while in the Schedule Comparison Tool, you have the 

option to cancel without accepting a plan? 

 

               No  Somewhat Yes 
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Appendix F: Post-experiment Survey  

1. How confident were you about the actions you took? 

 

Not Confident   Somewhat Confident   Confident   Very Confident   Extremely Confident  

Comments: 

 

2. How did you feel you performed? 

 

 Very Poor           Poor          Satisfactory         Good          Excellent 

 

3. How busy did you feel during the mission? 

 

Idle         Not Busy       Busy             Very Busy        Extremely Busy 

 

 

4. Did you feel distracted?     Yes       No 

 

If so, please list some of the items or activities that distracted you 

from the mission: 

 

 

 

 

 

 

 

5.  Other comments: 
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Appendix G: Linear Regression Coefficient Tables  

Test of Homogeneity of Variances 
 

  
Levene 
Statistic df1 df2 Sig. 

Target Finding Score 1.891 2 24 .173 

Hostile Destruction Score .861 2 24 .435 

Target Tracking 
Percentage 

4.063 2 25 .030 

 

 Tests of Normality 
 

  Kolmogorov-Smirnov(a) 

  Statistic df Sig. 

Target Finding Score .154 26 .116 

Hostile Destruction Score .188 26 .019 

Target Tracking 
Percentage .319 26 .000 

 

G.1     Target Finding Score 

Coefficients 
 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta B Std. Error 

1 (Constant) .530 .252   2.099 .048 

  Total Directed .330 .366 .183 .902 .377 

  Total Divided .395 .394 .172 1.004 .326 

  Total UT -4.920 1.644 -.579 -2.992 .007 

  Gaming .184 .105 .319 1.759 .092 

2 (Constant) .601 .239   2.519 .019 

  Total Divided .415 .392 .181 1.059 .301 
  Total UT -4.206 1.435 -.495 -2.931 .008 

  Gaming .153 .098 .264 1.553 .134 

3 (Constant) .715 .214   3.341 .003 

  Total UT -4.275 1.437 -.504 -2.975 .007 

  Gaming .139 .098 .241 1.424 .167 
4 (Constant) .906 .170   5.341 .000 
  Total UT -4.282 1.466 -.504 -2.920 .007 

Dependent Variable: Target Finding Score 
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G.2     Target Tracking Percentage 

  Coefficients 
 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta B Std. Error 

1 (Constant) .998 .031   31.858 .000 

  Total Directed .131 .063 .427 2.074 .049 

  Total UT -.637 .307 -.427 -2.078 .048 

Dependent Variable: Target Tracking  Percentage 
`` 

 

G.3     Hostile Destruction Score 

Coefficients 
 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta B Std. Error 

1 (Constant) 1.227 .635   1.933 .066 

  Total_Focused -.296 .920 -.067 -.322 .750 

  Total_Divided .068 .990 .012 .069 .946 

  TotalUT -8.405 4.136 -.405 -2.032 .054 

  Gaming .491 .264 .348 1.863 .076 

2 (Constant) 1.245 .567   2.196 .038 

  Total_Focused -.293 .899 -.067 -.326 .747 

  TotalUT -8.424 4.037 -.406 -2.087 .048 
  Gaming .489 .256 .347 1.908 .069 

3 (Constant) 1.177 .517   2.276 .032 

  TotalUT -9.055 3.475 -.437 -2.606 .015 

  Gaming .518 .236 .367 2.190 .038 
a  Dependent Variable: HostileDestructionScore 
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Appendix H: Hourly Pairwise Comparisons  

 

  

Factor comparisons represent the four hour mission duration: hours 1, 2, 3, and 4. 
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Appendix I: Descriptive Statistics  

  N Minimum Maximum Mean Std. Deviation 

Required Utilization 30 .01 .03 .02 .00 

Self Imposed Utilization 30 .03 .15 .10 .03 

Total Utilization 30 .05 .18 .11 .03 

Performance Score 27 .23 5.3 2.2 1.6 

Target Finding Score 27 .12 1.3 .43 .28 

Hostile Destruction Score 27 .01 2.0 .88 .69 

Target Tracking Percent 28 .80 1.0 .97 .05 

Number of Search Tasks Created 30 57 340 190 68. 

Replan Avg Reaction Time 27 1.7 27 8.6 7.1 

Prompted Search Avg Reaction Time 30 10. 30. 21. 6.9 

Chat Avg Reaction Time 28 3.0 48 19 11 

Chat Accuracy 30 .33 1.0 .89 .20 

Prompted Search Task Accuracy 30 .25 1.0 .73 .23 

Extra Search Tasks 30 42 330 180 68 

Extra Replans 30 46 370 190 74 

Extra Target Edits 29 .00 12 4.0 3.6 

Number of Targets Lost & Found 29 .00 4.0 .93 1.2 

Age 30 19 32 23. 3.0 

Sleep Self Rating 29 1 4 2.6 .78 

Health Self Rating 30 1 3 2.6 .57 

Gaming Level 30 1 2 1.3 .48 

Gaming Experience 30 1 4 2.1 1.0 

Computer Comfort Level 30 1 4 3.2 .81 

UxV Perception 30 2 5 3.7 .79 

Self Rated Confidence 30 3 5 37 .55 

Self Rated Performance 30 2 5 3.7 .61 

Self Rated Busyness 30 1.0 3.0 1.9 .56 

Divided SociallyDirected with poor posture 30 .00 .10 .03 .03 

Divided PhysicallyDivided Socially 30 .03 .55 .17 .13 

Divided CognitivelyDivided Physically 29 .00 .13 .01 .03 

Distracted SociallyDivided Cognitively 30 .00 .29 .09 .09 

Distracted PhysicallyDistracted Socially 30 .00 .18 .06 .05 

Distracted CognitivelyDistracted Physically 30 .04 .59 .29 .15 

Total DirectedDistracted Cognitively 30 .10 .75 .34 .15 

Total DividedTotal Directed 30 .09 .55 .22 .13 

Total DistractedTotal Divided 30 .07 .79 .44 .20 
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Appendix J: Sources of Error  

If this experiment were to be repeated, certain aspects of the study could be 

controlled better. Perhaps a psychological profile could be conducted before the 

experiment to cross-reference personalities with boredom coping mechanisms. Video 

footage that simultaneously shows a clear close-up of each operator’s face as well as the 

distraction material they are engaging could result in more accurate video coding. One 

video source served as the footage for all three participants in each test session, and a 

clearer view of each participant and their surroundings could be attained with separate 

cameras focusing on each participant.  

A more stable simulation would improve the testing environment. Nine of 39 

participants’ data had to be discarded because of simulation crashes, and the system 

failures interrupted the test session each time. In addition, more controlled movement 

of the hidden targets could have been achieved to ensure all participant scenarios were 

equivalent in terms of hidden hostile targets uncloaking and quantity. A more robust 

automated planner would remove participant frustration with the automation and 

make for a more controlled study. All of these sources of error could be accounted for in 

order to improve the validity of independently verified results. 
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Appendix K: Top Performer Demographics  

 

Rank Age Sleep Self-rating Health Self-rating Computer Comfort Level UxV Perception 

1 19 2 2 2 3 

2 28 3 2 3 5 

3 23 3 3 1 3 

4 23 2 3 3 4 

5 23 4 2 2 3 

6 23 3 3 3 4 

7 23 3 3 4 5 

8 23 3 2 3 4 

 

Rank Confidence Self-rating Performance Self-rating Busyness Self-rating 

1 3 4 3 

2 4 3 2 

3 4 4 3 

4 3 4 2 

5 4 4 1 

6 4 4 2 

7 4 5 2 

8 3 4 2 
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